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THE PROPAGATION OF PLANE ACOUSTIC WAVES IN A RADIATING GAS

By BarrerT STONE BaLDWIN, JT.

SUMMARY

A study is made of the interaction of thermal
radiation and fluid flow in the acoustic approrima-
tion. An earlier investigation 1s reviewed wherein
the disturbances produced in a semi-infinitc expanse
of radiating gas by sinusoidal motion or temperature
variation of a plarne radiating wall are analyzed.
The one-dimensional unsteady-flow equations appli-
cable to this problem are generalized to include the
¢ffects of a frequency-dependent radiation-absorption
coefficient. It is found that a single wntegro-
differential equation of the same jorm as that
previously given is obtained. It is demonstrated
that by a redefinition of parameters, a previously
given solution applies for a frequency-dependent
absorption coefficient as well as for a grey gas.
The solution appears, in general, as the sum of two
types of harmonic traveling waves: (1) an essentially
classical sound wave, but with slightly altered speed
and a small amount of damping, and (2) a radiation-
induced wave whose speed and damping may be
either large or small, depending on the frequency of
oscillation. and the condition of the gas.

The previously given solution for sinusoidal
motion of the wall is used in superposition to find
the response to an impulsively moving wall. The
general results are given in the form of integral
expressions for the linearized disturbance quantities.
A closed-form approximation for the velocity dis-
" turbance is obtained. It is found that the main part
of the response to an impulsive motion of the wall
propagates initially at the isentropic speed of sound.
As it progresses, however, the wave becomes dispersed
and its main part travels at a somewhat slower speed.
Eventually, the main part of the disturbance shifts
back to the isentropic speed. Some components of
the response, associated with the radiation-induced
wave system, travdd at speeds up to the velocity of

light. As a result, there is a small precursor to the
main wave front. This part of the response dies out
exponentially with distance ahead of the main
disturbance.

The validity of several approximations used in the
derivations is investigated. The second-order equa-
tions are derived to help establish the conditions under
which the linearized resulls are a first approximation
to the original nonlinear equations. An integro-
exponential function appearing in the basic equa-
tions was approximated by an exponential through-
out the present work.  This expedient was introduced
in early solutions of astrophysical problems. The
validity of this approach for the present problem is
investigated by means of a two-term approrimation
and by considering the properties of an exact solution
for a grey gas. It is found that the kigher derivatives
of the flow quantities are not given correctly by the
approximation in a small region near the wall.
However, valid results are obtained for the flow
quantities themselves everywhere.

The integral cxpressions representing the response
to an impulsive motion of the wall are evaluated
exactly in closed form for a number of special
cases. This is done to provide information on the
pressure and temperature fields and as a check on
the approximate evaluation of the velocity duistur-
bance. Additional checks are made by means of
numerical evaluations of the integral expression
for the velocity.

Finally, the problem of the response to a sudden
change in the temperature of a fired wall is con-
sidered briefly. In this case, a small velocity dis-
turbance builds up and then decays to zero. Near
the wall, the gas temperature relares exponentially
from its original value to that of the wall. At
large distances from the wall, the temperature varia-
tion is of a type characterized by a diffusion process.

1
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INTRODUCTION

The present work is an extension of the investi-
gation reported in reference 1 concerning the
interaction between thermal radiation and fluid
flow in the acoustic approximation. This field
of study was initiated in 1851 by Stokes (sce ref.
2). His purpose was to show that thermal radia-
tion does not affect the propagation of sound under
ordinary conditions. This accomplished, such
an interaction was not further considered until
recently. Since 1956 a number of papers on the
propagation of weuk disturbances in a radiating
gas have appeared.

Stokes’ investigation was based on an approxi-
mation appropriate to highly transparent, low-
temperature air.  Ileat exchange was assumed to
take place between each element of gas and a
reservoir al the temperature of the undisturbed
gas.  (For a brief outline of this work sece also
ref. 3.) A parameter that is a measure of the
rate of heat fransfer at a given temperature
difference has been ealled the Stokes coefficient
by later authors.  The acoustic equation resulting
from the inclusion of such a process is a third-
order partial differential equation. In the past
decade two comprehensive surveys on the pro-
pagation of sound in fluids have appeared in the
literature (see refs. 4 and 5). Tu these the {reat-
ment of the effects ol radiative heat transler is
based on the Stokes approximation. In reference
6 a method for evaluating the Stokes coeflicient
is developed which  yields useful information.
This work utilizes the correct integral expression
for the radiative heat transfer between elements
of the gas. The solution is assumed 1o be of the
same form as that resulting from the Stokes
approximation and this leads to an evaluation
of the Stokes cocfficient. In addition acoustic
wave speeds and damping constants are [ound
which compare lavorably with the results {rom
more tecent investigations,

So far as the author is aware, the first complete
theory for the effect of radiative heat transfer
on the propagation of sound far [rom any obstacle
was developed by V. A. Prokol’ev (see refl. 7).
Euarlier work in this field by Prokof’ev is referred
to in reference 7. This author considers the
problem of thermally radiating acoustic waves
in great generality, including the effects of
viscosity and thermal conductivity as well as

the smaller effects (for acrodynamie purposes,
at least) of radiation scattering, radiation pressure,
and the direct contribution of radiation to internal
energy.

In all of the foregoing works, except reference 1,
attention is confined to the propagation of sound
waves in the gas far from any boundaries. In
reference 1 an infinite, plane radiating wall is
introduced and taken to be the source of the
disturbances. Tollowing a paltern established in
previous investigations of chemical and vibrational
relaxation effects, the influence of the nonequilib-
rium process under study is isolated by neglecting
other complications. In references 8-11, for
example, a single chemical or vibrational non-
equilibrium process is introduced into the govern-
ing equations with all other processes taken to be
in equilibrium.  Also, in these works attention is
confined to one-dimensional unsteady or two-
dimensional steady flows with simple boundary
conditions. Reference 1 and the present work,
taken together, represent an atiempt to include
flows with radiative heat transfer in this category
of flow ficlds involving a single nonequilibrium
process. In the case of chemical und vibrationsl
nonequilibrium, it was found that the same
governing differential equation applies for either
process in the smuall-disturbance approximation.
It will be seen that the nonequilibrium efleet due
to radiation does not fall in the same class,
although there are certain similarities.

The present investigation follows reference 1
in assuming that nonequilibrium effects from
processes such as molecular transport, dissociation,
vibration, etc., are negligible.  Radiation scatter-
ing, radiation pressure, and the contribution of
radiation to internal energy are also neglected.
For simplicity, the gas is assumed to be perfect.
The radiative effects are taken into account on the
basis of the usual quasi-equilibrium hypothesis,
wherein a Boltzmann distribution of excited states
is assumed. The geometrical configuration to be
considered is that of a semi-infinite expanse of
radiating gas on one side of an infinite, plane
radiating wall.  Initially the gas is assumed to be
at rest, in a uniform state, and at a temperature
equal to that of the wall. One-dimensional
disturbances can then be produced in the gas by
moving the wall at constant temperature, or by
varying the temperature of a fixed wall, or both.
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In its one-dimensional character, the present
problem is related to the classical astrophysieal
problem of the plane-parallel stellar atmosphere
(see, for example, ref. 12 or 13). For that case,
however, the fluid motion is negligible and there
is no wall. The treatment of radiation in the
planc-parallel case has recently been extended to
include the cffects of fluid motion and solid
boundaries (sce refs. 14, 15, and 16).  Inreference
1 the wall boundary condition is generalized, and
the basic equations are used to derive an integro-
differential acoustic cquation for a grey gas
(absorption coeflicient independent of optical
frequency). This analysis is generalized slightly
in Section T of the present work by including the
effect of a frequency-dependent absorption coeffi-
cient. The resulting linear integro-differential
cquation is of the same form as that which applies
for a grey gas. The only difference is that an
integro-exponential function, appearing as an
attenuation factor in the equation for a grey gas,
is replaced by a more complicated funetion in-
volving an integral over optical frequency. It is
found that the radiative properties of the gas
enter the ecuation only in their effect on the form
of the attenuation fuctor and the value of a mean
absorption coefficient, both evaluated at the
undisturbed condition of the gas. To help estab-
lish that the present lincarization is imbedded in
a successive approximation procedure, the second-
order equations are derived in appendix B.

In reference 1, with the aid of a suitable approxi-
mation to the attenuation factor appearing in the
radiation terms, the acoustic equation for a grey
gas is solved for the case of a black wall under-
going sinusoidal variations. A similar procedure
in Section IT of the present work leads to a solu-
tion of the same form for a nongrey gas. This
approximation, wherein an integro-exponential
function is approximated by an exponential, was
first used in an early solution of the stellar-atmos-
phere problem (sce ref. 12). The validity of the
approximation for the problem considered here is
investigated in appendices C and D, Appendix D
contains discussion of a procedure for finding an
exact solution for a grey gas. It is found that in
the exact solution the higher derivatives ol the
flow quantities must be singular at the wall.
The approximate results do not reproduce this

effect; however, the flow quantities themselves
are adequately approximated everywhere.

A large [raction of the present effort goes into
finding the response of the gas to an impulsive
motion of a wall at fived temperature. Tn sec-
tion ITT, the solution for this case is found by
superposition of the sinusoidal solutions using
Fouricr-transform  theory. The general results
are given in the form of integral expressions for
the linearized disturbance quantities. These are
evaluated exactly in closed form, for certain
limiting values of the variables, in appendix L.
A closed-form approximation for the velocity
disturbance at all values of the variables is de-
rived in appendix F, and this is checked by nu-
merical evaluations in appendix G.

The results from the entire investigation of the
response to an impulsive motion of a wall at
fixed temperature are summarized and discussed
in Section IV, Tt is found that the main part of
the resulting wave propagates initially al the
isentropic speed of sound. As it progresses, the
wave becomes dispersed and travels at a slower
speed, which, for a high gas temperature, becomes
the isothermal speed proposed by Newton for
sound waves. These findings are qualitatively
similar to those for a gas in chemical or vibrational
nonequilibrium.  (For that case, the initial ve-
locity is the frozen speed of sound, and the final
propagation velocity is that corresponding  to
equilibrium.)  After reaching the slower speed,
however, the subsequent behavior of the compres-
sion wave in {he radiating gas differs from that
associated with the other nonequilibrium proc-
esses. In particular, the main part of the disturb-
ance eventually shifts back to the higher isentropic
speed. In addition, some components of the
response travel at speeds up to the velocity ol light.
As a result, there is a small precursor to the main
wave front at all of its positions. This part of
the response dies out exponentially with distance
ahead of the main disturbance.

Tinally, the problem of the response to a step
variation in the temperature of a fixed wallis
formulated and carried to partinl completion in
appendix H. Tn this case, a small velocity
disturbance builds up and then decays to zero.
Near the wall, the temperature relaxes expo-
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nentially from its initial value to a final value
equal to that of the wall. Far from the wall, the
temperature variation is of a type characterized
by a diffusion process.

In the present work, emphasis is placed on
fluid-dynamieal effects rather than on the physics
that goes into the determination of the absorption
coefficient.  When evaluation of the absorption
coefficient is considered, however, common ground
is estublished with another class of aerodynamic
problems that have received increased attention
recently. In  these problems the motivating
consideration is the evaluation of the heat transfer
to a space vehicle during reentry into the carth’s
atmosphere. For this purpose, carly theoretical
and experimental work on the radiative properties
of air was carried out at the Avco Everett Re-
search Laboratory (see ref. 17 and refs. thercof).
A useful semiempirical theory for the emissivity
of hot air is also given in reference 18. To assess
the contribution of radiation to reentry heat
transfer; the eflect of the radiation on the fluid
motion was at first neglected (sce ref. 19). TIn
reference 20, however, a simplified problem is
solved wherein the interaction between the radia-
tion and fluid flow is taken into account. This
work includes information on other high-tempera-
ture properties of air, which would be of interest
in any attempt to compare the results of the
present work with experiment.

A related problem, concerning the effect of
radintion on shock-wave structure, is considered
in reference 21. Tt is found that, for weak waves
in a gas at high temperature, the structure of the
shock may be determined by radiative heat
transfer, with neligible effects from viscosity and
thermal heat conduction. It is a matter of future

interest to investigate the relutionship of this
result to the linearized solution for weak waves
found in the present work.

Before concluding the discussion of gas proper-
ties, three other pertinent investigations should
be mentioned. Reference 22 contains an excel-
ent review for aerodynamicists of the basic ideas
mvolved in the theory of radiative heat transfer,
including an application of quantum-mechanical
theory in the evaluation of the radiative properties
of oxygen. Reference 23 contains a similar
analysis for a monatomic gas, and the results are
applied in a study of shock-tube flow. Finally,
the results of the present work may find applica-
tion in investigations of very low frequency waves
in the atmosphere. TFor information on the
radiative propertics of air under atmospheric con-
ditions, sce reference 24,

The small-disturbunce inviscid-flow theory that
has evolved over the years tukes account of the
effects of viscosity and thermal heat conduction
by replacing shock waves and boundary layers
with discontinuities. The same procedure is
used in the present work. Thus the gas im-
mediately adjacent to the wall, when disturbed,
may arrive al a temperature different from that
of the wall by virtue of the presence of an opti-
cally thin thermal boundary layer. For super-
sonic or unsteady flow, cumulative nonlinear
effects appear at large distunces from the source
of a disturbance even in the lowest-order small-
disturbance approximation. Such effects can be
taken into uccount by a straining of the coordinate
system (see refs. 25 and 26). Presumably the
coordinate-stretching process can be ecarried out
here, but the matter will not be investigated at
this time,



I. ACOUSTIC EQUATIONS FOR A RADIATING GAS

The linearized equations for one-dimensional
unsteady flow of a radiating gas are given in refer-
ence 1. The coordinate system, showing the z
axis to be perpendicular to the bounding infinite
plane wall, is depicted in figure 1. The semi-
infinite expanse of radiating gas lies in the direc-
tion of the positive z axis from the wall. The
wall is at z=x,(f), allowance being made for its
motion. In the present work, the gas will not
be assumed grey as in reference 1, but the wall
will be considered black. In that case the acoustic
equation of reference 1 prior to the inclusion of
the grey-gas assumption is

Do, (y—1)
atz a‘O axr_)_ P Q (1)

where ¢ is a potential in terms of which the
perturbation velocity, pressure, temperature, and
density are given by the relations

, Op

u =3 @
= o )
(e o
%pt_'z_,,o %f (5)

The prime is used to denote a perturbation
quantity. The subseript 0 denotes the condition
of the undisturbed gas wherein the gas is at rest,
in a uniform state, and at a temperature equal
to thal of the wall. For example, g, is the gas
density in the undisturbed state, and p’ is equal
to p—po. The symbols ag v, and I have the
conventional meanings so that «, represents the
isentropic speed of sound in the undisturbed gas,
v the ratio of specific heats for a perfect gas, and
I the gas constant. All symbols are defined in
appendix A. A derivation of equations (1)-(5)
is contained in appendix B.

The quantity @ appearing in equation (1) is
the net radiant energy absorbed by the gas per

668944—(3——2

unit volume and time. In general, ¢ can be
analyzed in terms of its components @, for par-
ticular optical frequencies », where

o[ e ©

An expression for @, is derived in reference 1 for
quite general properties of the wall and the gas.
The subsequent derivation there is specialized to
the case of a grey gas. In the generalization to
the case of a nongrey gas, to be treated here, the
wall will be considered black. The appropriate
expression for @, can be obtained by setting the
quantity ¢ equal to one in equations (20) and (21)
of reference 1. The result is

Q,, = 27ra,[By(Tw) Ez(ﬂy) + I:)””BV(T) El (nv—‘ﬁx')dﬁv

n f " BT B —n)d5—2B(T)] (7)

Equations (6) and (7) have not yet been lincar-
ized. They will be rearranged and linearized to
obtain an expression for  in terms of ¢ for use in
equation (1). Equation (7) applies in particular
to the case of a black wall, T, being the wall
temperature. The quantity «, is the absorption
coefficient of the gas at the radiation frequency »

uw-'uw(r) =Velocity of wall

Ty =Ty (1) =Temperature of wall

Ficure 1.—Coordinate system.
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as defined, for example, in reference 22. The
function B,(T) is the Planck function
2853 1
BAT) T T )

and K (2), E,(2) are the integro-cxponential
functions

1
E"(Z): [ /"‘"_26_2/“(11‘1 n=1,2 (9)

JO

For a discussion of the properties of these func-
tions including a number of integral relations, sce
reference 27.

The quantity », is the optical depth from the
wall for radiation of frequency v, and is given by

x
Ne == f
o T ll)

The temperatures 7 and 7 that appear in equa-
tion (7) are the gas Ltemperatures at the positions
corresponding to 5, and 7, respectively.

o, (z)dz (10)

A useful alternative form of equation (7) is the
relation found from it through an integration by
parts

QF?mu{ (BT )= By(T) 5, o] F%: (n,)

w dB,(T ..ol ..
- f ‘ £ ) Ez(ﬂugﬂﬁ 3: (]77.;
VO M

dT
*dB.(Ty . . 2T .
S B G—n) 21 ds, 11
+ L G n)amrn} an

It should be noted that the partial derivative
oT/07, is used to indicate that ¢ is held fixed. A
further rearrangement of this expression for @,
will be made such that upon substitution in equa-
tion (6), the integration over » can be carried out.

In the grey-gas approximation («, independent
of »), an average absorption cocflicient « and a
corresponding optical depth 3 are introduced to
replace «, and 5. The method of averaging is
arbitrary, depending on the weighting function.
Acccrding to reference 16, the Planck mean
absorption coefficient and optical depth are de-
fined by the relations

AERONAUTICS AND SPACE ADMINISTRATION

f " BT ey

a=""_ (12)
[' B.(T)dv
/0

X
T a(Z2)dz (13)
Jzrn

When a, and 9, are replaced by « and 4 in equa-
tion (11), and the result is substituted in equation
(6), the integration over » can be carried out ex-
plicitly by an interchange in the order of integra-
tion. This is so because the only remaining »
dependence is in the quantity B.(T), given in
equation (8).

The grey-gas approximation will not be used in
the following derivation. Tn the analysis of a real
gas, for which a, varies with [requency, the
integration over » cannot be dispensed with so
readily. However, it will be seen that the averaged
quantities o and 7 are still convenient variables for
the more general case.

As a first step toward removing the » dependence
in equation (11), we note that, for fixed » and ¢,
there is a functional relationship between n and 4,
so that, by a transformation, 7, can be replaced
with 7 as the variable of integration. Tor this
purpose, the following relations can be established
by comparison of equations (10) and (13).

(for fixed » and ¢t) (14)

«,
dg,="=d
N . 7

Ta, . -
e d# (15)

n=n.(n, i)“—‘f

JO

It follows that

T .. oT .
677’;(]1’],, —gﬁ lln (16)

Equation (11) can then be written as

Qv:2m{ (BT — BTl ol Ealn)

Td BT ., YA
— [ Ban—) O d
[; o7 7y 1s) on”’

=dB(T) . .. T . i,
+‘£ 7 ,(%—n,) aﬁ'[”} (17)
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The integral over » could now be completed
except for the » dependence in the arguments of
the /£, function. Tn fact, this can still be done in a
small-disturbance approximation. This comes
about because when equation (17) is linearized,
the » dependent Tuctors no longer depend on the
tetperature variations in the flow field. Then the
integration over » can be carried out once and for
all.

In the acoustic approximualion @, and hence @,
is needed only to lowest order in the departure
from the undisturbed gas condition. Prior to a
disturbance, the gas is at a uniform temperature
equal to that of the wall. Tt follows thut

B.(Tw)—DB(T)|y-0 and g—f are perturbation quan-

{ities. As a result, to lowest order, the other
factors in cach term of equution (17) can be
evuluated at the undisturbed condition of the gas
(subscript 0). To accomplish this, the following
relationships can be established by power series
expansion

,m (7‘0

BT =B.Ty+ BT oy as)

BAT) =BT+ (T“

Te+0(T) (19

where
T'=T—T, Tu=T.—T,

Since T, is constant, differentiation leads to the

relations
dB,(T) _dB.(T)_dB,(Ty)
T = = ar, T
oT oT’
on o1

Combination of these relations yields

(U) (TU

BT — ) (T —T"],-0) +0(T"?)

dB,(T) OT _dB, (TO) an ,
T o= T, oy TOIT)

Rv<T) ;11=0’—

The symbol 0(77?) is intended to include second-

T:2. The last

oT
order terms of the
On
two expressions can be used to write equation (17)
as

Q=2 [ "B Fof) (T Tl
"dB,(T
- W) Sy 0
([R (To ’]”

4 [TBETD ) S 0T | 20)
The quantity dB,(Ty)/dT, is constant, since 7o
is constant. Therefore dB.(Ty)/dT, could be
tuken outside the integrals. Instead, in order to
consolidate the » dependent factors in each term,
a,,, which is also constant, will be taken inside
the integrals in the next rearrangement of equation
(20).

The relation between 5, and 7 is also nceded
only to lowest order in 77. Thus equation (15)
can be writlen as

v [t aor)

Since ay lap is constant, it can be taken outside

the integral and this becomes
av” " A ’ ’
n=a? [T o =Stab0r) @)

Substitution of equation (21) into (20) and
rearrangement leads to the expression

Q.=2may, — 7 ',B <TO) L)< ) (Ty—T|y=0)
— [ -mvo‘{r ey A (=9 |5 @5

© B(T, T . ,
R ro[ 2 (5—9) | G 47407
(22)

The function 2ma,, —7— (IR (T") E, ( ) appearing in

each term of oquatxon (JB) now contains all of
the » dependence.  The subseript 0 indicates that
this function is to be evaluated at the undisturbed
condition of the gas. The integration over » can
therefore be completed for all time, without con-
sideration of the temperature variations associnted
with particular problems. To this end, the fune-
tion F(y) is defined by the relation

, ® IR(T
(F(W)ZJ; 27ray0f 15100)

£, n) d (23)
0
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The constant, , can be chosen so as to obtain a
formal similarity between equation (27) to be
derived here and equation (33) of reference 1
(result for a grey gas). This is accomplished by
imposing the requirement that, when «,, is in-
dependent of » (and hence equal to ag), F(y)
will be equal to Fy(y); that is,

IB(To) .,
¢ d}('— Ey(n)dv

OEz(ﬂ):f 27ey
Jo
or

B =BTy ,
0* ‘)’ﬂ'a’oj:) ([TD

To evaluate the last expression, use can be made
of the demonstration in a standard textbook that
the Plank radiation Taw (eq. (8)) leads to Stefan’s
law; that is

271'(1(0 f BTy

- B(Dydv= T (24)

0
where ¢ is the Stefun-Boltzmann constant (see,
for example, ref. 28). By differentiation, it

follows that
C=8eT}y (25)

Use of this in equation (23) Ieads to

7 ® a”o dB, (To)
F(’?; 0) 4 T';f a ([Tu ( . )(/V (26)

Here the parametric dependence of F(y) on the
temperature of the undisturbed gas, T, is indi-
cated. Henceforth this will not be done,

When equation (22) is substituted into equation
(6), and the order of integration interchanged, the
result can be written in a form containing the
combination CF(z) in each term by the use of
equation (23). Taking € outside the integrals,
and replacing it by means of equation (25) finally
leads to the result

Q=80T | Fa) (7%= T}0-0
* Y [‘“ .ol .
—| Fe—m2l_ g —n) 21
[; (n—m) > HH-M F(p—n) 7 (M]

27)

where terms of order 77 arc neglected. This

result is formally identical to equation (33) of

reference 1 when the latter is specialized to the

case of & black wull. The only difference is that
the F,(n) function, resulting from the grey-gas

AERONATUTICS AND SPACE ADMINISTRATION

approximation in reference 1, is here replaced by
the funetion () defined in equation (26). The
definition of %, equation (13) is the same as that
used in reference 1, where it appears as equation
(22).

The foregoing procedure can be extended to
higher order. Tt is then necessary to define addi-
tional functions, similar to F(y), which involve
integration over v of integrands containing higher
derivatives of B,(T,) with respect to T, as well as
derivatives of (a,/a) and (a,/p) with respect to T,
also evaluated at =17,  The sccond-order equa-
tions are derived in appendix B.

Equation (27) is now in a form suituble for
combination with equations (1) and (4) to ob-
tuin a single ecxpression for the potentinl ¢,
but in addition a relation between 3 and z is

needed. This can be found from the definition of
, given in equation (13). To lowest order, this
becomes

n=ag(z—x.(1)] (28)

The ecarlier relations, to be used in the combina-
tion, are

a2¢ 3%_.__(7_1)
5{2" ao OIZ_ Po Q (1)
o' _ 1 (% _ai ¥
ot R\of2 4 ox? 4

Equation (28) can be used either to replace g
in equation (27) or to replace z in equations (1)
and (4), retaining % as an independent variuble.
If the results are extended to higher order, a
difficulty associated with the transfer of boundary
conditions is avoided by the use of 5 as independ-
ent variable. That approach is used in appendix
B. However, such complications will be ignored
here, and z used as a variable instead of 5. Then
7,.(t) is tuken to be a small quantity such that a
displacement through this distance at any point
in the field leads to higher order terms which are
neglected in the {irst approximation. As discussed
in reference 1, this is not a uniformly valid ap-
proximation because of the infinite derivative
of the F,(2) function at a zero value of its argu-
ment. In the present impulsive piston problem
there is a further difficulty arising from the fact
that z,(f) will become large at large time. Tt
can be shown that the result obtained by ne-
glecting z,(f) is vulid to lowest order (for values of
r not too lurge) il z is measured from the wall
rather than from a fixed origin. At large z, a
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straining of coordinates is required to render the
results valid as in any acoustic theory. These
points are further discussed in appendix B.
Substitution of equation (28) into equation (27),
with z,(f) equal to zero, yields

QZSUTgan{ Flag) [T —T" (£, 0)]

_ fo Flaglz—3)] a—aTx— di+ £mF[ao(5&—x)] 90%1 d:“c}
(29)

Substitution of this into equation (1) and differen-
tiation with respect to time leads to a relation

containing Differentiation of equation (4)

o* T’
S drot
with respect to z relates the latter quantity to an
expression in terms of ¢ so that 7”7 can be elimated.
The result is
2 2 3
L e

dT,’,, % aﬁbz) ]

oty o’

b 0 2%
~ [ Fiee—2) (S35 a2

[ Flae-01 S (L= 852) e

This equation, derived for a gas with an arbitrary
dependence of absorption coefficient on frequency,
is formally identical to equation (38) of reference 1,
when the latter is specialized to the case of a black
wall. The only difference is that the K, function
of reference 1 is here replaced by the function F,
defined in equation (26). A result not restricted
to the case of a black wall can be obtained by
replacing the E; function with the F function in
equation (38) of reference 1.

The boundary conditions associated with equa-
tion (30) are

%i.,: (t, 0) =u,(t) =given function of ¢ (31)
T, () =given function of ¢ (32)

o(t, ©) =finite quantity for all ¢ (33)



II. APPROXIMATE SOLUTION FOR AN OSCILLATING PISTON

In reference 1 solutions of equation (30) corre-
sponding to sinusoidal variations in wall velocity
and temperature were obtained for the casc of u
grey gas (F(z)=1I,(2)) by approximating the It,
function with an exponential. The same proce-
dure can be followed in the general case, when F(z)
is not equal to I5(z), by setting

F(z) ~me™"* (34)

The constants m and » can be chosen, as in refer-
ence 1, by making the approximation exact in the
Rosseland limit of strong absorption and by further
imposing a least squares fit. To obtain the Rosse-
land approximation correctly, it is necessary to
match the first moment as follows:

m

f F(.E’)SJZ:-f me "edz=— (35)
Jo S0 n

Tt can be shown that this is the correct criterion

from equation (29). To do this, first integrate
2y

the integral terms by parts so that %; appears

under the integrals, A limiling process with e
going to infinity then shows the result to be pro-
portional to a double integral of . By a partial
integration the latter quantity can be expressed as
the first moment of I (sce ref. 29).

Substitution of equation (9) into (26) and that
into the last equation yields

m_ T [ F o, AB(Ty)
40T ) oo Joe @ AT,

1 z
f exp [—% Z:I dudvzdz  (36)
Ju=0 o M

With an interchange of the order of integration

the z and u integrations can be carried out to

obtain

1sf®§@§§Q@@Q}@
JO

77?=§ n i
@ y

0 - T}
T

(37)

10

When this is substituted into equation (34), and
the value of n determined by a least squares fit
of the result to equation (26), it is found that n
nrust satisly the relation

" f““!lB,/(lTo « f“" dB,/dT,
0

— 20 fy—4 T 7 a N dv=0
* = 6T <1-}fﬂ'n-)
T a,

échg %o )

(38)

If a,, is independent of », it can be seen that this
reduces to
4

itn 0

or n=1.562 as obtained in reference 1 for the
case of a grey gas. In that case equation (37)
1 . .

reduces to m=z n?, also obtained in reference 1.
In the general case, when the dependence of a,
on frequency is known, equation (38) can be
solved numerically for n. The constant m can
then be evaluated using equation (37). By rede-
fining the quantities 8 and K appearing in equa-
tions (57 a, b) of reference 1 as

ﬁ:’ﬂ a(,(lr, (39)
w
and
1V LT3
K:HS(‘Y HeT}m 10)

Rpyay n

one can show that the resulls of reference 1 in
terms of g and K apply for a real gas when m and
n are determined from equations (37) and (38).
The validity of the exponential approximation is
investicated in appendices C and D where it is
shown that the resulting solutions lead to wvalid
approximations of the physical quantities every-
where. In a small region near the wall, the
higher derivatives of the physical quantities are
singular. The exponential approximation does
not reproduce this effect.
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The results from reference 1 for the case of an
oscillating wall are the following:

u(t,r) :(‘L; Re {l:cla exp (c;c:z)
+e,(; exp (Eili@)] e‘“"} (41)
)

Re [(010,+c202)e'wt]—_—%
{0
+(1+9) (32) ] =150 @)

ag=7RT,

(42)

where

I3 __[—(1—32—?'1&’6) FVO—F—iKB)* 48 (1— 1K T
) S(1—iKB/)

Equation (44) is the solution of a fourth degree
characteristic cquation which results from sub-
stituting a complex exponential form into the
integro-differential equation. The derivation of
these relations is contained in reference 1 and
is Turther discussed in appendix C herein.
Equations (41), (42), and (43) apply when the
wall velocity u,(f) and the wall perturbation
temperature 7T,(f) are sinusoidal functions of
time with radian frequency o and arbitrary phase.
When this is the case, cquations (42) and (43)
can be solved for the complex amplitudes ¢ and
(. Equation (41) then represents two damped
sinusoidal traveling waves. The damping con-
stants and wave speeds are determined by the
complex constants ¢, and ¢;. These are given
in terms of the radian frequency w, the basic
physical parameters, and the approximation con-
stants m and n by equations (39), (40), and (44).
The variations of the damping constants and
wave speeds through the whele range of pa-
ramelers are discussed in reference 1. As an
example of these results, the wave speeds 7, and
v, are plotted in figure 2 as functions of the pa-
rameter w/nag, for y=7/5 and K=4. In the
ficure, the dimensionless quantities oi/a, and
0.01 v,/a, are plotted to avoid specifying a, which
is the isentropic speed of sound in the undis-
turbed gas. Tt is seen that 7y is equal to a, at
low frequency and also at high frequency. At
intermediate frequencies the wave speed ap-
proaches the isothermal signal velocity ao/v7.

(44)

Since the speed of this wave does not deviate
greatly from the isentropic speed of sound, it
has been referred to as a modified-classical wave.
The other wave speed, w, varies between zero
and the velocity of light (luken to be infinite),
depending on the frequency. The term of equa-
tion (41) corresponding to z; has been referred
to in reference 1 as a radiation-induced wave.
The wave speeds are determined from the values
of the complex constants ¢; and ¢, by the relations

1/ap=—[Imaginary Part (¢,)]! (45)

m/ae=—[Imaginary Part (¢;)]! (46)
Figure 2 was plotted from data obtained by
electronic machine evaluation of equations (44)-
(46).

v
a—' {Modified-clossical wave!
2]

o

@

@
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o
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i—_—Oan (Radiation induced wave)
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Fireure 2.—Wave specds versus frequency of oscillation.



III. IMPULSIVE PISTON SOLUTION

The response of a radiating gas to an impulse
motion of a wall is governed by the integro-
partial differential equation (30). With the
exponential approximation (eq. (34)) of the
attenuation factor F(z), this is

b % L, 0% 8(‘)’*"1)0’T
ot 5t Ox? Rpg cm

. (]T’ ¢ af 9 )
{—e ° [R at a¢2 y oa? ]
0 /0% aldly
_— nog(2—2). U
fe ’ OT\Of2 v Or )[I

‘Z
T AL Py

where ¢ is a potential from which the gas per-
turbation velocity, pressure, temperature, and
density can be found using equations (2)—(5).
The boundary conditions to be satisfied are

swo—wo={p (S5 a9
L0 <o) ,

The initial condition

e(t, ©)=0  (t<0) (50)

is also imposed.

In the results to be given, the perturbation wall
temperature will be taken zero for all time (0=0)
and the wall velocity at £0 will be considered
constant. However, the required relations for
more general cases will be developed up to a point.

Solutions corresponding {o general time-de-
pendent houndary conditions can be obtained by
superposition of the oscillating piston results set
down in the previous section. As they stand,
cquations (41), (42) and (43) apply only when
u,(t) and T,(f) are sinusoidal functions of time
with radian frequency w. For the general time-
dependent case, the right side of equation (41) and
the left sides of equations (42) and (43) should be

12

integrated over all values of « from zero to = as
follows:

u(t,ac)=% Rcf (e1Crec19/80 4, Cye207/%) gt iy
JO
(51)
Re f (@Ot eCestdo=Lu, (1) (52)
1] 0

Re{ =i [(45) (1) o+ (1)
(s72) (12] o'vide } - (t)

It is expedient to make use of Fourier-transform
theory in evaluating €, and C} from equutions (52)
and (53). To this end, the Fourier transform for
an arbitrary function f(f, z) is defined by the re-
Jation

(53)

f(w, x) =}r f_if(t, z)e~teldt (54)

where the bar over the function indicates that it is
a transform. The inverse relation

J(@, r):}z— f_m S, 2)etldw (55)

follows (see, for example, ref. 30). This definition
differs from the conventional one in that the (—%)
is usually associated with the inversion integral
rather than the transform as it is here. The rea-
son for the present choice is to avoid the necessity
of changing the sign in the appropriate places in
all of the results of reference 1. When f(t, z) is
real, it can be shown that the real part of f{w, z)
must be an even function of w and the imaginary
part odd. When f(¥) is also zero for ¢<0, equa-
tions (54) and (55) can be written alternatively as

Fao— [Trwaeea o

f(t,m)zRefmf_(w,x)e“'"(lw 57)

By choosing f(#, 2) in these forms to be (—} u,(¢) and
0
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comparing equation (52) with (57), it is seen that
equation (52) corresponds to the relation

c1m+c2(z:al () (58)
(1]

Similarly equation (53) becomes

S0

(D) T o

When () and 7', are given functions of
t that are zero for 1<0, their transforms can be
found according to equation (56) and are given by
the relations

ﬂw(w)::% ‘; w,(B)e~"e"dt (60)
T;f(w)::; fn T (t)e~"edt (61)

These results, substituted into equations (58) and
(59), lead to two simultaneous cquations which
can be solved for the quantities ¢, and ), needed
in the integral expressions lor velocity, tempera-
ture, and pressure; to be given in equations
(62)-(64). The quantities ¢, ¢;, and 8 appearing
in equations (58) and (59) are the same functions
of w as in the oscillating piston solutions and are
given by equations (39) and (44).

The integral expression for the velocity, equa-
tion (51), can also he written as

0

a ,
,”(t’ J‘) :% f ((’1(‘11(‘(1“]]""0—!—('2 YZ(,czwI;’aq)(,fml(]w
-~ —w@

a ® , .
=?O R(‘f (e Crec1e™Mog ¢, Chet2r0) otoldy  (62)
0

The second equality follows from the symmetry
of the integrand.

Similar expressions  for the pressure and
temperature can be found using equations (2),

(3), (4) and (62). The results are

p’(t,x) =—p2ﬁ lf (Cyecrerimo - Cypczutine) gl ]y

:-poR(‘f
WO

©

((efremimuf. (O pcratia)pivl ]y,
(63)

and

« 2

2
H(149) ] v

i c?
:—TO R(‘ I I‘ [(] _i._’;]) (Flerlw_r/no
J0

2
+<1 +;) m] of'de  (64)

In the derivation of these relutions, differentia-
tions and integrations with respect to t and z are
tuken inside the integral with respectl to w.  Also
use is made of the fact that the perturbation
quantities are zero al #<0. These steps can be
justified only under certain conditions which
require discussion. It is necessary that the
integrals with respect (o « be integrable at least
in the sense of the Cauchy principal value. For
example, if the functions u, () and T, (#) are such
that the transforms 7, (w) or Th(w) are singular at
any point on the path of integration (the real
axis in the complex « plane), then these singulari-
ties must be circumnavigated along infinitesimal
semicireles either above or below the real axis in
the complex w plane.  Tn the present problem, it
can be shown that the path of integration in
equations (62), (63) and (64) should pass below
any singularitics on the real axis to insure that the
perturbation quantities will be zero for t<0. The
demonstration is somewhat complicated by the
existence of branch points.  Equation (44) can be
written as

8 a < P 2 i G 0 K el S 1
ol _I:_ (@ —nPagrs— iR naytyw) T (=’ — 1 Knoyyw)? +4i’ofaiw(e— 1 Knayt/y) |2
¢ 2w(w— 1 Knayto/y)

G6S8044 - 63

3

(65)
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The quantities ¢} and €, appearing in the inte-
grands can be found by solution of equations (58)
and (59). Upon replacing the quantity g with

the aid of equation (39), the results are

01 =
(@)

Ny

_<1+£§ (naﬂ”—}-wr;> o Uu(&)_*—ul) T

r-l)( Ny > ( )( nogyy O p
1
nayly+ @y Ilauflu‘l‘w('g

(66)

AN/ ety \ Y= A
1 )( : )—u,w~zc
( + Nl | we, () S

)( Nagy ) ( cq)( NayQy ) .
. Co— —-Je
NLY000+u(1 Iéa(,ﬂu+wf;

(67)

Tt can be seen from equation (65) that there are
six branch points in the expression for ¢; and c..
Three of these are in the upper half of the complex
« plane and one at the origin (sce sketch),

lw,;

o---}---o

Y,
o - )

The remaining two are in the lower half-plane.
The quantities ¢; and ¢; will be single-valued
functions of « if a branch cut is introduced con-
necting the four branch points on or above the
teal axis, and a separate branch cut is introduced
connecting the two branch points in the lower
half plane. In the following, the properties of
¢; and ¢, in the lower half-plane only are of interest.
It can be scen that ¢; on one side of the branch cut
in the lower half-plane becomes ¢, on the other
side and vice versa. From oquatlom (66) and
(67) it follows that the same is true of ¢} and (.
Since the integrands of equations (62), (63), and
(64) are unchanged by an interchange of the sub-
scripts 1 and 2, the branch cut in the lower half
plane can be dispensed with. In general, there
may be additional regions of nonanalyticity arising
from T,(w) and To(w). TFor the specific problem
to be considered, there are not. At this point we

will specialize to those cases where U, {w) and
To(w) are analytic in the lower half-plane.  Then,
altogether, one ean conclude that the integrands
of equations (62)—-(64) are analytic in the entire
lower half-plane, but contain singularities and
branch points on and above the real axis.

The Cauchy integral theorem can now be used
to show that the path of integration in equations
(62)—(64) should be tuken below any singularities
on the real axis to insure that the perturbation
quantities will be zero for £<{0. Let us assume
that the properties of T,(w) and T.(w) are such
that the parts of the integrands excluding ¢« in
equations (62)-(64) are zero ut infinity. Then for
t less than zero, each line integral involved can be
closed with a semicirele at infinity in the lower
half-plane without adding anything to the value
of the integral. The resulting closed contour will
not cnclose any poles so long as the path of
integration along the real axis is taken to be below
any singularities on the real axis. TIn that case
the value of each of the original line integrals is
zero Tor 1<0.

We will now specialize to the ease of impulsive
motion of the wall with wall temperature held
constant. The boundary conditions for this case
can be written as

£0 (1<0)
@=L @0 O

e—0

T()=0  (all 8) (69)

Substitution of these relations into equation (56)
yields

u ( )_—l hm [‘ (A‘Elc,-—fu;ldt 70)
20 Jo
and B

Evaluation of equation (70) leads to the resull

T =2l (- L )= a2

T e \etiw TW

At this point, it is helpful to note that there is a
basic similarity in the problem. By the intro-
duction of a set of dimensionless variables, it is
possible to present the results in a form which is
independent of the values of the radiation absorp-
tion coeflicient, ay, the approximation parameters
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m, n, and the gas properties a;, . An appropriate
set of similarity variables is the following:

T:‘/ Ea— (73)
- \/inaux (74)
V= \/:waoag (75)
lc:\“@[{/'y:lﬁ\/ (y— 1)7?7]‘—:3;(,0 (76)
Aj:irv\,/% now (%} e,C, (=1,2) (@7
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Using these cquations, the expressions for the
velocity, pressure, and temperature become

u(gié)__%r f_ (Ayecrsit. LCCWE)eUr 78)
RT;;([} B %f [(H— ) Ay 1tk
The wave speed parameters ¢;, ¢;, and the wave

amplitude parameters A;, #; are given by the
relations

1/2
. ——(ug—i'ykv————>i\ <u —iyhy— “) 44 (7“” o (r—ik)
c.,} = 50— i) &)
5 " ~N
/ 44 1+\/ 2w,
A1 ] 1= 2 YL e (82)
/ 2 20 | ©
Y \'/'y—E—] v,
o SRR, (LT
) (1442 ‘ ¢ 2,
Ao | [’+\ 7+1V_Cz G !"J 1— 1+ I_ZZJLIQ (83)
: 3 2 ¢/ 2
4G 2 148 g/
+'Y Ll+»\,/7+1 e,y / + \1 T‘\07+1 ve,

As discussed carlier, the Jine integrals in equations
(78)—(80) should be distorted from the real axis
near »=0 so as to pass below the singularity at
the origin.

The task before us now is to evaluate the inte-
grals in equations (78)—(80). This can be done in
closed form only for certain limiting cases or by
approximation. The methods used will be demon-
strated for two cases in this section, and the re-
mainder will be treated in appendices E and F.
Oune question which arises is whether discontinu-
ities occur in the flow field as a result of the
discontinuous wall velocity. Such a discontinu-
ity might oceur at 7=0. Ii will first be shown
that this is not the casc. For this purpose we
shall concentrate on the expression for the veloc-
ity given in equation (78).

It was demonstrated carlier by means of con-
tour integration that equation (78) will lead to
w/U==0 for 7<0. Therefore, the quantity ¢”7 can
be replaced by ¢?"—e ! since the added term
will be zero except possibly at r=0. Then equation
(78) can be replaced by

Und_ 1 f (et Ayt (et &
0 (r<0)

= ;f_ (et ST, ()
(84)

It can be seen that the real part of the integrand
in this expression is an even function of », and the
imaginary part is an odd function so that cqua-
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tion (84) can be written as

u(r H_2 f Re (A et 4 Ayoerrty ST sinvr
(T/)O) (85)

this can be

For slightly positive values of 7,

written
u(O-#v 3) 2]im f "Re (et 4 Ayt Sm—w
C T 30+

+2 Jim f _Re(deevts dyerst) ST g, (g
T 750+,
The integral is broken into two parts here o pro-
mote simplifications in each part. The point of
division is, to some extent, arbitrary. By ex-
pansion of sin »7 in a power series and use of the
fact that the quantity Re [, exp (ewd) +4, exp
(evE)] 1s bounded, it can be seen that the first term
in this expression for w(0-+, £/U is, at most, pro-
portional to 47 multiplied by a convergent series
and hence vanishes in the limit as r goes to

zero. Then equation (86) becomes
71(0+ £_2 lim _Re (Aot t A ety S00T sin iy
T 10+ y
(87)

If the quantity Re(def*8 4 At s expanded
for large v, it can be scen that only the lowest
order terms can contribute to the integral in the
himit.

For later use, the wave speed parameters ¢; and
¢, given in equation (S1), can be partially ex-
panded for both large and small » in the forms

 (y—Dkv
vi—ivky —I—‘y; !

C1:—i I —

! 172
’Yél (v—1)%%E

L 0% (small y)
(V —ivkv+ it 1) {0(v‘7)(l=11'g0 v) (88)

_ /(741) 2 10—t
\ u(v—’M) PR 'y—FI_
[

v+l 7242 12
( ) — D% {O(V‘-’)(snmnp)

EES) 0(»~®) (large »)

( —ivkv +‘Y+] ) =

This result is obtained by rearrangement of the
quantity under the inner radical in the form

(vz—ivl‘VAL_;i>2+4 (7_;]) v(v—1k)
. 1y r -
:(v’—wkw%'yg ) +4 (% ) (y—1)k»

and by expanding about a zero value of the second
termon theright.  Further expansion of equations
(88) and (89) f01 large v leads to the relations

e ——i—— -—+o( )

oL ()

Substitution of these expressions inlo equations
(82) and (83), and expansion of the result for large

v yields
1 ’ 1
A=140 (\V:,)

i
L=0(5)

Use of equations (90)—(93) in equation (S7) leads

to

u©--, 8 .. 2 (7

=lim =
L‘T i+ T Y vl_7'

kfinmite  (90)

kfinite  (91)

k finite 92)

k finite (93)

Ree-mte ()

[1e0()]

It can be seen that the contribution of the term
containing ﬂ() is zero in the limit as 7 goes to
V/

zero and the integral ecan be written as

u(0+ ) (‘\p[ <—1> ]

. 2™ cos sin
Im =2 ii({f}p (VT) dv
0+ T Jy 7 14

By the same procedure as before it lollows that
the contribution to the integral from this integrand
in an interval 0 to 1/y7 is zero in the limit. Add-
ing this interval, again using the symmetry, and
expressing the cosine and sine in exponential form,
the integral ean be written as

LOLD_ Oy (77 [
Eaetin m -
dv

[(,iv(f‘l*f)+()iy(r—i‘_e—iv(r—f)we-iyfr+€)] i
4
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T we take the line integral to pass below the
origin, cuch exponential term ecan be evaluated
separalely. This is done by closing the contour
with a semicircle at infinity in the lower or upper
halfl plane, depending on the sign of the argument
of the exponential, and using the calculus of
residues.  The result is the expression

w8 _ ~Ca)e, 1

L 70 +

T+E
[r g

To cvaluate this, the value of & must be specified
relative to 7 before taking the limit.  When this
is done, it can be seen that

u(0+,8) {0 0Lr<lk (04)

!T—El

U 1 0<¢<r

Since the expansion for large » used in the deriva-
tion is valid only for finite &, this result may not
apply in the limit as k—w, although it does
apply at all other values of k. In fact, the same
result can be obtained for infinite £, but the proof
requires a more detailed procedure which will not
be given here.

We have found that the gas velocity is zero
at slightly pesitive values of 7 except at the wall
(£==0), where the gas velocity is equal to the wall
velocity.  Corresponding results can be found for

the perturbation pressure and temperature.
These results are
puttel/ 1 0<£<'r
RT' (04,8 _ [0 0<r<¢ (96)
al’ (y—Df  0<E<lr

By a similar procedure, it can be shown that
jumps in velocity, pressure, and temperature
occur at r=¢ for all finite & For the velocity, the
quantity to be evaluated is

[u<s+e. E)—"(Efre’g]

U
:li_l:(; (%) I‘- (efv:__e—ive)
dv

[ A E(C1+0VE+[1 6(02+i)v$]
14

Iim
U

The results are

iy [0 T [(55)8]

(97)

[P EteE) plE—ed) —1
151—1:«}[ Plﬂug Puau6 ]A(‘\l)[ < 2 >A{]

(98)

- [1;’T’($+e,§]_

a,
(5[]

Equations (97)-(99) indicate that the jumps in
velocity, pressure, and temperature at r=¢
decay exponentially with distance from the wall.
This finding is qualitatively similar to that fora
gas in chemical or vibrational nonequilibrium in
the absence of radiation (ref. 31). Tlowever,
in the present case where the effect is due to radi-
ative heat transfer, the disturbance is not zero
ahead of the jump (r<{§) as it is for chemical
nonequilibrium.  This will be demonstrated later.

Tn reference 10, an expression is derived for the
velocity field far from the wall in the case of
chemical nonequilibrium.!  The same can be done
in the present problem by expanding the inte-
grands in equations (78)--(80) for small values of »
and demonstrating that the contribution to the
integral from other values of » is zero. The
evaluation for this and for other limiting cases is
given in appendix E.

To obtain a qualitative view of the over-all
flow field, ecither approximation or machine
computation must be resorted to. Both methods
have been used to evaluate the velocity disturb-
ance for the present problem. An approximate
closed-form solution is derived in appendix F.

RT (t—e, E):I
(’l[)[‘Y

0

t In references 10 and 31, the problem treated is that of the steady supersonie
flow past a wedge. For chemical or vibrational nonequilibrium there is a
direet analogy with the corresponding one-dimensional unsteady flow prob-
lem, Strictly speaking, such an analogy doesnot exist in the case of radiative
Teat transfer because of the directional properties of the radiation intensity.
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The result is
L (r,9=0  (r<0)
7 \mé= T

7 (D=5 (1—6—X/")[elr< T‘E +1[(T+‘E,
2

Ty -Y>{mf[6<r §—: =

)]

torf [-—b ("H,)jx]}
2\ X

5[0 @0 am

where
X=G—1)kt (101)
b=k/2-+(k/2) 1 (102)

The over-all velocity field will be described in the
next section.



IV. RESULTS AND DISCUSSION

Equation (100) is a closed-form uniformly
valid approximation for the linearized velocity
response to an impulsive motion of the wall. A
comparison of this result with numerical evalua-
tions is made in appendix G. Equation (100)
provides a good qualitative summary of the
results of the numerical investization and will now
be used for that purpose. An evaluation of this
equation for an intermediate value ol the radiation
parameter (k==3.0) is shown in figure 3. The
value k=3.0 corresponds toughly to the value
K=4.0 used in figure 2. The ratio of specific
heats v is tuken equal to 7/5, but the results
would be qualitatively similar for any v between
1 and 5/3.

Figure 3 is a plot of gas velocity divided by
piston velocity as a function of time 7 and distance
from the wall £ These results apply at all values
of the mean radiation absorption cocfficient, ay,
by virtue of the basic similurity and use of the
radiation mean free path (ayh) as the unit of length.
The dimensionless time, 7, and distance, §, are

180

defined in equations (73) and (74) which are

=+2/(v4 Dnaya,t and £=+2/(y-+ D) nagr. Since
V2/(y+1)n is of order one, the radiation mean free
path is approximately equal to one in units of &
The disturbance velocity is plotted as a function
of time at a series of fixed positions. The 7 and £
scales are broken at several points to produce a
better visualization of the entire flow field. Be-
tween breaks the scales are linear and would have
their origins at the intersection of the 7 and £ axes
if continued back to the origin. Notice that the
scale size is quite different in the separate regions.

At a point located a small distanee from the
wall, the velocity takes a sudden jump at a time
equal to that required for a signal traveling at
the isentropic sound speed to reach the point.
Tn other words, initially, the disturbanee is a unit
step propagating at the isentropie speed. The
step dies out exponentially with increasing dis-
tance from the wall and is replaced by a smooth
transition from zero at 7=0 to a value of 1.0 at

r—o. In this process the center of the dis-

180
190

Fioune 3.—Disturbance velocity response to impulsive motion of piston (xk=3.0).
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turbance shifts toward the path of an isothermal
signal (r=v7%). Eventually, at a large distance
from the wall, the center of the disturbance
shifts back to the path of an isentropic signal at
r=¢£.  The center of the disturbance is taken to
be the point where the velocity has reached 4 of
its finul value when plotted as a function of 7 for
fixed £ This point is indicated in each subplot
of figure 3 by a heavy vertical line under the
curve.

At small and intermediate distances from the
wall, the response is similar to that for a gas in
chemical or vibrational nonequilibrium (see refs.
31 and 35). For that case the disturbance is
initially a unit step propagating at the frozen
speed of sound.  The step dies out exponentially,
the wave front becomes dispersed, and its center
shifts to the slower equilibrium speed.  The sub-
sequent behavior differs from that for a radiating
gas in that the disturbanee continues to travel at
the slower speed rather than switching back to
the starting value.  There is a further difference
between the two cases. For a radiating gas,
there are no characteristics corresponding 1o a
finite velocity.  Consequently, a precursor extends
ahead of the path of an isentropic signal at r=¢
(see fig. 3).  No such effect occurs for chemical or
vibrational nonequilibrium because there is a
characteristic corresponding to the frozen sound
speed, and hence no disturbance ahead of this
line.

A qualitative physical explanation can be given
for the response of u radiating gas to the impulsive
motion as follows: Referring again to figure 3, at
small distance from the wall the wave front is
compact such that its width is small compared to
the radiation mean free path (equal to 1 in units
of &. As a result, the radiative heat transfer
within the wave front is negligible.  The disturh-
ance is then governed by the isentropic condition
and travels at isentropic speed.  As it progresses,
the wave front becomes dispersed by the small,
but  nonzero, radiative heat-transfer process.
When the width of the wave becomes comparable
to the radiation mean free path, heat transfer can
readily oceur within the front. This tends to
hold the temperature constant, depending on the
mtensity of radiation. At high initial tempera-
ture of the gas (large %), the temperature is held
essentially constant within the wave [ront, and
the disturbance travels at the isothermal speed.

At large distances from the wall, the wave
front becomes so dispresed that the radiative heat
transfer is impeded as a result of reabsorption
relatively near the point of emission,  Thus, when
the width of the front becomes large compared
to the radiation mean free path, the adiabatic
condition applies, and the disturbanece travels at
the isentropic speed.

There is another useful qualitative explanation
for the behavior depicted in figure 3. These results
can be related to the properties of the solution for
sinusoidal motion of the wall, given in figure 2,
as follows. At small £ the wave front is compact.
Consequently, at a fixed point near the wull, the
gas velocity varies rapidly with time. A Fourier
analysis of such a rapid variation would indicate
a preponderance of high frequencies.  In figure 2
it can be seen that at high frequencies the speed
of the modified classical wave »; is equal to the
isentropic speed of sound a,. This accounts flor
the initial propagation of the compression wave
at the isentropie speed. At intermediaie values
of & where we see in figure 3 that the disturbance
1s partially dispersed, the Fourier analysis would
show the peak amplitude to be at intermediate
frequency. Figure 2 indicates an approach to
the isothermal speed at intermediate frequency, in
agreement with the shift to a slower speed in
figure 3. When the wave front is further dis-
persed, at large & the resulting low frequencies
lead to a prediction of the observed return to the
1sentropic speed.  Obviously, there are gaps in
the foregoing explanation, if it is not supported
by other information. But such a point of view
may be useful in other problems involving a
Fourier transform that is difficult to invert.

An understanding of the response to an impul-
sive wall inotion is not complete without considera-
tion of the effect of varying the radiation param-
eter k. This quantity is a measure of the intensity
of radiation. Tt is defined in equation (76), which

. (v+1) "
is K‘:lﬁ»\/% (v—1) (7;) oTi/lvRpyay. At small

-alues of £, the response should become that
associated with classical acoustic theory, namely
a unit step in velocity propacating unchanged at
the isentropic speed. At large values of %, one
would again expect the classical result, but with
the isentropie speed replaced with the isothernal
speed, since the large radiative heal transfer
associated  with small temperature differences



PROPAGATION OF PLANE ACOUSTIC WAVES IN A RADIATING GAS 21

5460

£:0.001 {Low )

5459

54.60

Fretre 4.—Disturbance velocity response to impulsive motion of piston (x=0.001).

would hold the temperature constant. These
expectations are realized in a sense, but there are
singular perturbation effects at both small and
large k resulting in a somewhat more complicated
picture. Such effects could be predicted, at least
in part, from the results given in reference 1
(response to sinusoidal motion of the wall).
There it is shown that, for large k, the classical
result of undamped sine waves traveling at the
isothermal speed is obtained, except for very high
or very low frequencies (see fig. 3 of ref. 1).

At small k, equation (102) indicates that the
quantity & becomes 1.0, and using equation (101),
equation (100) can be written as

MT_)‘ _! (1—exp [— (y—1)k])

ks0 2
T-&
”2}+ {2[(\7-1)768 })
3

+§ exp [— (yV3—1)k] (1 T

erl

At all values of ¢ except large values comparable
to %; the quantity exp |—(¥—1k¢] is equal to
1.0 so that equation (103) represents a unit step

665944 63~ 1

propagating at the isentropic speed (the path of
an isentropic signal is at 7==§). This is the classi-
cal result which is expected for k=0 when radiation
effects are absent. However, at large values of ¢
comparable 1o 1/k, the step dies out exponentially
and is replaced by the error function variation.
The distance from the wall at which this occurs
goes to infinity as & goes to zero. At such dis-
tances, the transition in velocity still occurs in a
region narrow compared to the distance, and the
transition is centered on the path of an isentropic
signal. This result is plotted in figure 4. Since
the unit step propagates unchanged until the
distance from the wall becomes large of order
k=1, the region where it does change is brought
into focus by plotting the velocity as a function of
kr and kErather than 7 and £ Two other features
in figure 4 require explanation. The width of
the region where the velocity transition occurs
depends on the value of & and is narrow compared
to the distance from the wall. Therefore, a
specific small value of % equal to 0.001 is used.
Also the scales are broken in several places with
difTerent scale sizes in each region.

For small k we see in figure 4 thut the disturb-
ance remains centered about the path of an isen-
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A=1000 (High 75!

Ficvre 5.—Disturbance velocity response to impulsive motion of piston (x=1000),

tropic signal (kr=*~kg). 'The radiation merely
causes o dispersion so that the unit step is eventu-
ally replaced by a smooth transition.

At large values of % (high temperature), equa-
tion (102) indicates that the quantity b is equal
to k and equation (100) becomes

uA(‘r £ Hm:é {l—er\'p |:_ (Y7—1) §]}
T+¢

( {_(V:g)“w}Jr {2[(w Dkg]Y

39
+5 esp (— (- Dkt (1475

+5{ o0 [~ (50 § Jewl—(r-nrl }
Fr—v7)
<OIf (\ ’;:1 AE [Iu}
K(ry7)

+01f{ 1)k£]1,2}> (104)

Three ranges of distance from the wall must be
considered in this case. All three ranges are
shown in figcure 5. Here the scales are broken in
several places and are linear between breaks as in

ficure 3. A value of £=1000 was used to compute
the points, but the graphs would remain similar
for larger values. There is a boundary layer in

. . 1 .
which £ is small of order A where the appropriate
inner variables are kr and k£, as shown in figure 5.

In this layer % is small compared to 1.0 and the

uantity exp | —(/y—1) £ becomes 1.0, Then
q Y 1Y A
equation (104) simplifies to

UA(T,E) _lj . _ 1'___ s
I {1—exp [—(vy—1)kE]}
kg fixed
kr fixed

!

kr—\leé }_ { }
ey A ET T

5 o (-0t (14725 ) aos)

(crf {

Within the boundary layer this result includes a
step which propagates at isentropic speed and dies
out exponentially. The error function terms
represent a smooth transition centered about the
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path of an isothermal signal (kr=v7kE). When
k£ becomes large compared to 1.0, the latter varia-
tion replaces the step completely and we have

Uy 1( — vkt
wy o 1 1+crf{ . ) (106)
g 3 (ol

kr fixed

kE> ™

This function represents a transition from zero to
one in a narrow region centered about kr=+vk&.

In the next range of distance from the wall, the
appropriate variables are 7 and £ These are taken

to be large compared to %, but small compared to

k. Tn that case exp [—Hy—1)¢k]=1.0, exp
K‘T"*—\!;kg_ =1.0.
2(\y— 1)kt

) (107)

By cancellution of vk from the numerator and
denominator of equation (106), it is seen that the
result at the outer edge of the boundary layer
matches equation (107), which applies outside
the boundary layer. In terms of the physical
variables r and £, equation (107) rcpresents a
unit step prop.‘wntinw at the isothermal speed.
At Jeast it is a step in the limit as k£ goes _to in-
finity, since the error function structure ¢ then
becomes compressed into an infinitesimal width.

and erf

[—Gv—1)kE]=0,

Equation (105) then becomes

U =l<‘ ,f{ VE(r =)
Ul T2\ g e

£ fixed
17 fixed

Thus, except for very small £ of order % and very

large £ of order k (see below), the expected classical
result of a unit step with isothermal speed is
obtained. Then the step which appears at
r=+%E in the middle and outer regions in figure 5
has an error function structure, not resolved in
the graphs.

The last range of distance from the wall, of
interest for the case of large £, comes into focus

in terms of the variables % and % When these

] .
are taken to be large compared to e equation

(104) simplifies to the expression

ua(r, §)!

SRR

£/k fixed
7k fixed
T £
-G
o[ (-t

(1)
2[ -0 k]

(108)

1+oerf
1 ~ o f
—I—Z exp l:— (vy—1) E] 1-+erf

At §/k<<1.0, this reduces to equation (107), and
hence 1c~pr(\sont~. a unil step propagating at the
isothermal speed. As gk increases, the step dies
out cxponentially and is replaced by the error
function variation indicated in the first term.
In this process the precursor, extending ahead of
the line r=%, reappears (sce fig. 5). At values
of §/k>>>1.0, equation (108) becomes

T

_£
k

walr, § 0 o k
[»‘ E>e 2 [( I ]
Efk fixed Y
rfk fixed
tho o

(109)

This result yields the asymptotic behavior at
large gk, The transition of the velocity dis-
turbance from zero to one starts ahead of the path
of an isentropic signal (r/k=¢/k) and is com-
pleted in a width of order [(W¥—DERP =y
—1D7/kE. Thus the width of the wave front
grows parabolically at large distances from the
wall; whereas the separation between the paths of
1soth(\1mnl and isentropic signals increases at a
faster linear rate,

Tn retrospect it can be scen that the bhehavior
of the disturbance for Jarge k is qualitatively
similar to that for the intermediate value of
£=3.0, described earlier and pictured in figure 3.
But f01 large k, the switch from isentropic towar d
isothermal speed of the wave front occurs at
smaller distances from the wall, is more complete,
and persists to a larger distance from the wall.
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Numerical investigations have not been made
of the pressure and temperature fields, Howerver,
the behavior of these quantities can be deseribed
qualitatively using the results from the limiting
cases discussed earlier and in appendix E. Since
the results for large k& are similar to those for
intermediate values, only large k£ will be considered
here.

Referring to figure 5, at values of 2£<C<(1.0 (i.e.,
near the wall) the velocity undergoes a unit step
at kr=r¢t and thereafter remains constant. The
dimensionless perturbation pressure p’/pga,l7 also
takes a unit step at this point, but does not remain
constant thercafter.  From equations (F.1)-
(F.3) and (I.14), it can be seen that in a time of
order kr=1.0, the pressure at the wall drops to a
value of 1/v%. Tt remains at this value until a
large time of order r=*%, when it slowly returns
to a value of 1.0 and thereaflter remains constant.

At a point located outside the boundary layer
such that I~ << <k the velocity undergoes an
error function variation from zcro to ome in a
narrow region near r=+v¢ The perturbation
pressure follows a similar variation from zero to
1/yy in this region. But rather than remaining
constant thereafter as does the velocity, the
perturbation pressure eventually rises to 1.0 at a
time of order r=#£.

At large distance from the wall, where ¢ is
large compared to k, the pressure variation follows
that of the velocity. This is an error function
variation from zero to one in a relatively narrow
region near r=¢, and no further change. In all
three regions the final value of the perturbation
pressure is 1.0, which is the same as that which
would occur in the absence of radiation (k=0).

Equations (F.1)~(F.3) and (F.15) can be used to
find the behavior of the temperature for the case of
large k. At the wall the dimensionless perturba-
tion temperature R7T"/a,lU undergoes a step at
=0 similar to that taken by the velocity and
pressure, but the amplitude is equal to (y—1)/y.

This is the same variation as would occur in the
absense of radiation. However, in a time of
order kr=1.0, the perturbation temperature drops
asymptotically to zero by radiation to the wall,
which is held at constant temperature. It should
perhaps be reiterated that, in the present inviscid
approximation, the temperature of the gas adjacent
to the wall need not be equal to the wall tempera-
ture at all times because of the presence of an
optically thin thermal boundary layer.

At a fixed value of £ of order one, the pertur-
bation temperature (as a function of r) remains
zero in the neighborhood of r=+% & where the
velocity and pressure rise. Tt subsequently rises
slowly and falls again to zero at some tine greater
than 7=Fk,

At large distances from the wall (£>>F), the
temperature participates, along with the pressure
and velocity, in an isentropic variation near
r=¢  Thus the perturbation temperature, 7T’/
a;U, rises to a value of (y—1)/y. In the subse-
quent time, while the pressure and velocity re-
main constant, the temperature slowly returns
to its initial value of zero in a time greater than
r=Fk. The final perturbation temperature in all
three regions is zero owing to radiation to the wall,
which is held at constant temperature.

In reference 1, a solution corresponding to
sinusoidal temperature variations of a fixed wall
is discussed, as well as the results for sinusoidal
motion of a wall at constant temperature. The
problem with impulsive time dependence, corres-
ponding to the former, would be that of an im-
pulsive temperature variation of a fixed wall.
This is an interesting case. Although no complete
study of the problem has been made, a qualitative
description of the results to be expected is given in
appendix .

Axmus Resgarca CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MorreTT FIELD, CAUTF., Aug. 9, 1962
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APPENDIX A

TABLE OF SYMBOLS

quantity equal to (kg/y)/[1+28%/
(y+1)]

isentropic speed of sound in undis-
turbed gas

positive finite nonzero constants
defined in equations (E.8) and
(E.9)

complex constant defined in equa-
tion (C.3)

complex wave amplitudes defined
in equations (77) and (78)

imaginary part of one root of
P—ik+1=0 (sce eq. (I.19))
also used as a parameter cqual
to ayty/w in appendix C

positive finite nonzero constants
defined in equations (E.8), (E.9),
and (E.13)

complex constant defined in equa-

tion (C.4)

Planck function, see equation (8)

velocity of light

complex constants containing
wave speeds and damping con-
stants of modified-classical wave
and radiation-induced wave,
respectively

constant equal to SoTja,

complex wave amplitudes

error function equal to (2/\m)

n
—g2
f e *ds

integro-exponential function equal
1
to J‘ e—(ﬂ/p)“(n—Z)d“

arbitrary function

Fourier transform of f(t, x)

dimensionless wall velocity defined
in equation (B.S)

attenuation function defined in
cquation (26)

dimensionless perturbation wall
temperature defined in equation
(B.9)

h
H(y)
Im

[ly ]‘2) 13
k

K
m n

0(e)
r

!

P
Po, pl) Pe

Q
Q.

(Qs’a)n (Q/a)z

Planck’s constant, also enthalpy
per unit mass

complex quantity defined in equa-
tion (C.2)

imaginary part

integrals defined in equation (E.7)

Boltzmann’s constant, also used
as a quantity equal to 16
VoED2m/n) (y—-1) e T3/
(R poto)

equal to 16(m/n)(y—1)a T3/
(Bpuao)

quantities defined in equations
(34), (37), and (38)

quantity_of order e

@as pressure

perturbation pressure

components of pressure in expan-
sion (sce appendix 13)

net heat absorbed per unit volume
and time due to radiation

net heat absorbed per unit volume,
time and frequeney interval due
to radiation

components of (Q/a) in expansion
(see appendix B)

variable equal to kv

eas constant

real part of

time

gas temperature

undisturbed gas temperature

perturbation temperature

components of temperature in
expansion (see appendix B)

perturbation temperature at z=7

wall temperature

Tourier transform of perturbation
wall temperature
gas velocity
components of gas velocily in
expansion (see appendix B)
wall velocity
25
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Fourier transform of wall velocity

approximate gas velocity in im-
pulsive piston problem

remaining part of gas velocity
after subtraction of approximate
part (evaluated numerically)

constant wall veloeity at ¢2-0 in
impulsive-piston problem

Cartesian coordinate

coordinate at the position of the
wall

variable equal to (V¥ — 1kt

Planck mean radiation absorption
cocfficient defined in equation
(12)

value of & in the undisturbed gas

components of « in expansion (sce
appendix B)

frequency dependent radiation ab-
sorption coefficient

parameter equal 1o nayay/w

ratio of specific heats

a number small compared to one
x
variable equal t()f adZ

EMO]
dummy variable of integration

Ty, A
~=d
@ 1

variable equal to f

O
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77;'0; ul

8

=

Po
P, P2

bS]

1,2

components of » in expansion
(see eqs. (B.14) and (B.15))

variable equal to ¢ (used to
facilitate transformation)

value of wall temperature at >0

parameter cqual to S(y—1)eT3/
Rpa,

frequency of clectromagnetic radi-
atlon

variable equal to +2/(y<4 Dnaz

gas density

density of undisturbed gus

components of density in expan-
sion (sce appendix B)

Stefan Boltzmann constunt equal
to 5.673>X107% erg cm™? deg™t
sec™!

variable equal to v2/(v+1)nagat

velocity potential

radian frequency of oscillation in
oscillating piston problem

SUBSCRIPTS AND SPECIAL SYMBOLS
denotes the undisturbed gas con-
dition {as in py)
components of expansion used in
appendix B, for example, g, ps
denotes perturbation quantity (as
in p’=p—p,)



APPENDIX B

SECOND-ORDER EQUATIONS

To help establish that the Jinearization used in
the text is imbedded in a rational successive-
approximation procedure, the second-order equa-
tions will be derived in this appendix.  The small-
disturbance expansion could be carried out in a
number of different ways. As stated in the text,
nonuniformities can be partinlly avoided by
transforming to the variables ¢, #n in place of ¢, «.
This procedure will be used here.

The one-dimensional unsteady inviscid-flow
equations are

Dt+ a+pglj~ 0 (B.1)

2’;+ ” gg——g—];—ug—ﬁ::Q (B.3)

(see ref. 1). These are supplemented by equations
(6)-(17) of the text, which define @, and the
equations of state for a perfect gas, which are

/,:&1] RT (B.4)
] ‘—_1_ P =
1 ~%, (B.5)
The boundary conditions are
ult, r, (1) ]=u, () {(B.6)
u(t, r) finite at z- >0 (B.7)

The wall velocity u,(f) and wall temperature
T, arc taken to be given functions of ¢ (7, (t)
appears in the expression for Q).

We wish to expand the flow quantities about
a zero value of an appropriate parameter that is
a measure of the magnitude of the disturbance.
For this purpose, u,(f) and T,(¢) can be expressed
as

u, () =e ~/ 1) (B.8)

To()=To+eloy(t) (B.9)

where f(£) and g{(f) are given functions of ¢ with
maximum values of order one. Then € is a
dimensionless parameter that goes to zero in the
limit of a wvanishingly small disturbance. It
will be assumed that all quantities can be ex-
panded in powers of e at least to second order,
for example,

T=Ty+eTi+eTo4 . .. (B.10)

We will first expand the quantity (@Q/e) to
second order in ¢ and return later to the other
equations. The variable (Q/«) is chosen, rather
than (), to promote simplifications which will
become apparent later. Equations (6) and (17)
can be combined and written as

o ("‘"){m (T2 = BAT)y-ol )

JMIR(T) E.(n.—) Z(n
0 T o

{
n

where

n A
m=| “dn (15)

The integral over » ean be carried further by
expansion of equations (B.11) and (15) in powers
of e. TFor this purpose, the following expansions

are needed
(O (om0
o4 a Sy a1

1,=1,, e, +0()

(B.12)

(B.13)

v
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By substitution of equation (B.12) into (15), and

noting that (91) is constant, it can be established
a/o

a
Mog=— ; . n
UER Jo /s ([97

Power series expansion of the F; lunction yields

Ez(’?v>:E2(77y0+€7)yl—}— -

that
(B.14)

(B.15)

e ("hfo)

=F, (77, )+ - enyl+0(62)

The relation dE,(n)/dn=—E,(3) can be used to
write this expression as

Ey(n) =Fa(nyy) — eEi(n,) n., +0(¢)

Since the E, function is logarithmically singular
at a zero value of its argument, the radius of
convergence of the power series expansion of the
I, function goes to zero as 7,, goes to zero. How-
ever, this does not invalidate the expansion, since
en,, gocs to zero at the same rate as does the radius
of convergence. In other words, equation (B.16)
remains valid at all values of 4. This can be seen
by noting that as 5 goes to zero, where F(n,) is
logarithmically singular, equation (B.15) shows
that =, goes to zero algebraically. Then the
combination X, (n,)n., remains finite and, in fact,
goes to zero as n goes to zero. The same would
be true of all higcher-order terms in equation (B.16).

Using equations (B.12)-(B.16), the quantity

%’ E,(n,) in the first term of the integrand of

(B.16)

equation (B.11) can be written as

o Eg(m)=(%)0 s [(%)0 ”]
() B[R]
L@y o

For the purpose of expressing (/) in terms of T,

we will continue to concentrate on the first term
of the integrand of equation (B.11). By power
series expansion of the function B,(T), given in
equation (8), and using equation (B.10), we find
([B (T o

B,(T)=B,(Ty)+e 1BAT) 1

1 [(IB (TU)I'*'_(FI?/](’TO)[]"*“

. .(B.18)

From this and equation (B.9) it follows that

dB,(Ty)

Bv(Tw)_Bﬂ(T)!n=0_ lT

. dB, (TO)
Te { aT,

(T3g* (1) — T30} }+

[Toy(8) — Thig=ol

1d°B,(T
2}0 0+ ‘ d](‘m 0)

(B.19)

With the assumption of a Boltzmann distribution
of states, the quantity «,/e is a function only of
temperature (for a fixed value of ¥), since it is
proportional to the mass absorption coefficient.
This is the reason for choosing to expand (@/«)
rather than @. Expansion of a,/a in powers of
(T—T,) and use of equations (B.10) and (B.12)
leads to the result

;%
< > (T) (B.20)
- (ITO T,
Then, since T; is constant, it follows that
Q’
=T
( o) (B.21)

r Tydy

IRKOXES

Use of equations (B.12), (B.17), (B.20), and (B.21)
and a similar expansion of the integral terms of
equation (B.11) leads to the results

Q/QZE(Q/OI)1+€2(Q/0!)2+ (B.22)

} (B.23)

(Q/a)1=0%{ (Tag(O)—T ol F(n)

f (n n) F(I

aT,
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(@ay=e{ =Tty oF )

(=% s "
L =2 7y 2 = dn}

_|_0’{[ng(t) T2],-o]Fi(n)
o7t ;)

f (n n) Fo(ln— )

(* 0
- { [Tog(t)— Ty,- n]f Tlrlnru("l)

(e oT
O RO QRS

_L” K

where the functions F, F; and Fy, are defined
by the relations

o= (), R [(2), ]

(B.25)
&= (%), S [ (5), ] %
(B.26)
e[ BT (=) ]
(B.27)

The constants O, C, and C; are arbitrary. In
the text, ¢ was chosen such that for a grey gas
F(n) becomes equal to Fy(n). A similar choice
here leads to

0 SO'TOGO (25)
CI* 12 O'Tgao (BQS)

O[[:SO’TgCYQ (B‘ZQ)

Then for a grey gas Fi(n) also becomes equal to
E,(n). The function Fy;(n) introduces the effect of
temperature dependence of the mass absorption
coeflicient into the equation. In the case of a
grey gas, this function is zero.

In the foregoing procedure there are no obvious
difficulties that would prevent an extension of the
expansion to higher order in e. It can be shown
that an attempt to expand F,(9,) using z as the
basic variable instead of 5 will fail because, in
general,  is not zero when 7, is zero (see eq. (10)).

A new variable Z=2x—z,(f) could probably be
used, but the second-order part of (Q/a) would
contain additional terms depending on the density.
Altogether, » is probably the most convenient
variable, when the expansion in e is extended
beyond the linear approximation.

It can be seen that the transformed coordinate
system £, is not an inertial reference frame.
This complicates the expansion of the continuity,
momentum, and energy equations. However, it
will be seen that this complication is similar to one
which occurs in classical acoustic theory also, and
can be treated. To facilitate the transformation
procedure, ¢ will be replaced by 6. Then we wish
to express equations (B.1)-(B.3) in terms of the
variables 6,7 defined by

0=t (B.30)
n= a(t, 2)dx (13)
Jr (1)

The transformation of derivatives is, in general,

0_0f b+bnb
St otos ' ot On

0_20 070
dx 0z 06 " Oz On

(B.31)

(B.32)

These can be partially evaluated using equations
(B.30) and (13) to obtain

>_2 20 '
AR (B.33)
> o

The quantity on can also be evaluatedin terms of

ot

t and z using equation (13). However, in the

. o)
transformed equations, Byi must be expressed as a

funetion of 8 and 5. For that purpose, equations
(B.30) and (13) must be inverted to obtain expres-
sions for ¢ and z in terms of 8 and 4. Sincc ais a
function of terperature and density, the inversion
will depend on the condition of the flow field, in
general.  However, it turns out that with an
expansion about e=0, the inversion can be found
to any desired order in e by a “boot strap” type
procedure.
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Differentintion of equations (B.30) and (13)
yields

dg=dt (B.35)
o .
(In—— dt—i—arix (B.30)
where
d&p f Da(t ) A -
Yot at 2,50 . (B3D)
Inversion of equations (B.35) and (B.36) leads to
t—6 (B.30)
1,10,
dac—ad Y da (B.38)

Using equations (B.8), (B.30), (13),
equation (B.37) can be written

and (B.38),

)

n_ (10 1 ba(t %) A
o 2 f0)+ [

dy  (B.39)

To express this as a function of 8 and 7, a {rans-

formation of < according to equation (B.33) is

ot

needed. But g itself appears in that equation.

The process can be carried out, nevertheless,

, 0 . .
bCleSL‘, for evaluation of =7 to a given order in «,

ot

bt is only needed to the next lowest order. For

this purpose, an expansion of « is required as

follows

0(eé®) (B.40)

a=ay+ e+

Substitution in equation (B.33) and using the
fact that o 1s constant leads to

aa Da 1 an bal

Y ag—l-e ot or ——+0{e) (B.4D)

When this is substituted in equation (B.39), it is

On
seen that == 1s of order e.¢ Hence

ot

aa Da 1

Si=e S0 (B.42)

and it follows that

0

l_—— (_Ig € aﬂ’.l
ai — €ay ¥ .f(g) +a() Jo

dn—t—()(e Y (B.43)

This procedure could be carried to higher order,
but for the sccond-order results the derivatives
need only be transformed to order ¢ since the
quantities on which they operate are of order e

Expanding the flow quantities in powers of
and using equations (B.33), (B.34), and (B.43)
leads to an expression containing ¢ and & terms.
Equating the coeflicient of the e term to zero and
replacing 8 with £ yields

apl aU]

+anpo o =0 (B.44)

o e =0 (B.45)
oh_2p_, (@

Po 5 ( ) -0 (B.46)

Similarly, equating the coeflicient of the € term to
zero leads Lo the expressions

a b 2 0
e e (0

-}—l " % r/nJraUul] Ony

@), ot
upy ba"ur‘ﬁ%ﬁ’t_l (B.47)
+aio‘ e
—91%4‘3‘;%}% (B.4S)
_{.&l-;) . 0" %0;1 cln*an"l](”” %i;l abl;!,)
*aahzur %_% (B.49)

The quantily «; appearing here should be expressed
in terms of the other variables. This can be done
by expanding the quantity (a/p) in powers of
(T—T,). Tt can be seen in equation (12) that (a/p)
i1s a function of temperature alone, since the mass
absorption coeflicient (a,/p) 1s a function of tem-
perature alone in the assumed absence of non-
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equilibrium processes other than radiation. Tt is
found that «, is given by

(B.50)

The expansion of the cquations of state is
straightforward and need not be discussed.
Finally, using equations (B.6), B.7), and (B.8),
the boundary conditions can be written as

a

'U)Tnﬂl____,9 f(@)

Y
gy =0

and all quantities must be finite at y—>o. The
foregoing expansion procedure could evidently be
extended to any desired order in e

When solutions of the foregoing equations in
terms of ¢ and 5 are found, a parametric repre-
sentation would result from also expressing z as a
function of and 4. Such arelation follows from an
integration of equation (B.38) using equation
(B.43). Tf 9 is replaced with ¢ and equation (B.8)
used, the result is

n
r=Ltzu()—5 [ 2l H—an(0, H1A-H0()
i % Jo
(B.53)
The lincarized results given in the text can now

be derived. Expansion ol equations (B.4) and
(B.5) in powers of e yiclds

h1=711 2T, (B.54)
2
Lo 1o (B.55)

1=ﬁ170 ‘{R E]’Pl

Equation (B.45) is satisfied identically if a velocity
potential is defined by the relations

— %f;,l (B.56)

o}
P=—ro _é% (B.57)
Substitution of (B.56) into (B.44) leads to

Op o
3?12_90"‘33{; (B.58)

Differentiation of equation (B.55) with respect
to ¢ and substitution of equations (B.57) and
(B.58) yields

L (O 5 Do

oT, gy aj

A AR (B.59)

where use has been made of the perfect gasrelation
for the isentropic speed of sound
at=yRT, (B.60)

Substitution of the foregoing relations into equa-
tion (B.46) leads to

o 2% %(C’) -
o2 Ay anz— (y—1) Po P . (B.61)

It can be seen that (Q) -1 Q,--0(e), so that the
ajy Oy

last equation can be writlen as

2 2
For_ 29591,___(7_1)% (B.62)
0

2 (2 9
otr U0 oy’

To obtain equations (1)—(5) of the text from these
equations two further steps are required. TFirst,
the primed quantities in the text are perturbation
quantities so that, to lowest order, each is e
times the corresponding quantity with subseript
1. Since the e would appear as a factor in every
term, it would cancel. Secondly, if x,(f) 1Is
neglected in equation (B.53), we see that z is

equal to g to lowest order. With this substitu-

0
tion in equations (B.56)-(B.59) and (B.62), we
obtain equations (1)-(5) of the text. Alter-
natively, instead of mneglecling z,(f), we can
measure z from the wall.  That is, we can interpret
the variable appearing in the text as a new vari-

able Z, with Z2=2—a,(), so that fc:g- to lowest
0

order. Tt will be seen in the following discussion
that the second alternative is essential in the
present problem.

Tet us consider an expansion about e=0
with z as variable in place of » As in any
acoustic theory, such a development would include
a transfer of the boundary conditions from
r=1, to x=0; that is,

ou(t,x)

U(t_, :Cw):u(t, 0) +T 2e0 z‘w+0(x?0) (B.63)
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It can be seen by integration of equation (B.8)
thut z, is formally of order e. In classical acous-
tic theory this fact is used to arrive at the con-
clusion that the boundary condition for w; is

m(t,x)!z;o:%f(t)

When z,() is large, as in the impulsive-piston
problem at large ¢, it is customary to replace z
with z—ux,(f) in the solution. It can be seen from
cquation (B.53) that, to lowest order, this is
equivalent to using 5 as a variable instead of .
For the case of a radiating gas, there is an impor-
tant additional consideration. In appendices C
and D it is shown that the exact solution (for
sinusoidal boundary conditions) of the foregoing
linearized equations is not analytic at the wuall.
It follows that the boundary conditions eannot
be translated according to equation (13.63), even
for small x,. Therelore it is essential to wuse g
as a variable rather than z in this problem. Al-

though r cannot be used, the variable azr—rw(t)
could be, since it would not be necessary to transfer
the boundary conditions in that case. This is the
basis for the statement made in the text, that the
equations obtained by neglecting x,, are correct to
lowest order if # is measured from the wall, rather
than from a fixed orvigin.

One other type of nonuniformity appears in the

AERONAUTICS AND SPACE ADMINISTRATION

present linearization, as well as in classical acoustic
theory. A discrepancy appears at large distances
from the source of a disturbance owing to cumula-
tive nonlinear effects.  This can be illustrated by
considering the impulsive-piston problem, wherein
a compression wave truvels outward from the wall,
In the foregoing discussion, it is concluded that,
in the first approximation, x should be measured
from the wall.  For disturbances in the rear of the
compression wave this is correct, since they are
indeed moving into a gas that s al rest relative to
the wall.  On the other hand, the foremost part
of the wave front is moving into a fixed gas. Thus
the wave veloeity is in error by a small amount at
the front of the disturbance, an effect which can
lead to a large error in the relative positions of
elements of the disturbunce in the course of a
movement over a large distance. It can be seen
that similar errors will result from evaluating the
wave speeds at the temperature of the undisturbed
gas, rather than at the correct local {emperature.
These effects have been treated by a coordinate
stretehing procedure (refs. 25 and 26). In this
technique, the linearized results are not discarded
in favor of a new approach. The independent
variables are replaced in the solution by new
variables which are functions of the original vari-
ables. Tt is assumed that this procedure can be
carried out in the present problem, but the matter
will not be further investigated here.



APPENDIX C

INVESTIGATION OF EXPONENTIAL APPROXIMATION OF ATTENUATION FACTOR

In reference 1 and in the present work, the
attenuation factor F(y) appearing as the kernel of
the integro-differential equation (30), is approxi-
mated by an exponential according to equation
(34). TIn this appendix the validity of the ap-
proximation is investigaled in the case of a grey
gas, Tor which

Fln)=Fa(n) = [ e .1

Y

It is found that the approximation does not yield
a uniformly valid approximation for the gradient
of temperature at the wall.  The same is true for
higher derivatives of the other physical quantities.
However, no nonuniformities are found in the
approximations for the physical quantities them-
selves near the wall. At large distance from the
wall two kinds of error can occur as follows: (1)
In any acoustic theory, cumulative nonlinear ef-
feets appear in the evaluation of u flow field far
from the source of a disturbance, even in the
lowest approximation. T{ the disturbance is suf-
ficiently small at large distances, these effects may
not be important.  When they are important,
the linearized results must be corrected to obtain
a uniformly valid approximation (see refs. 25 and
26). (2) II an approximate solution is used,
rather than an exact linear result, there may be
additional cumulative effects which will cause
error in the prediction of the flow field far from the
source of disturbance. Again, such effects may
not be important il the disturbance attenuates
sufficiently. These matiers will not be investi-
gated here. Tn the following, an attempt will be
made to find any other possible sources of error
which may result from the exponential approxi-
mation of the altenuation factor. For this pur-
pose we will concentrate on the solution for the
response of a grev gas to sinusoidal boundary
conditions. Tn that case it is expedient to express

the potential and the boundary conditions in the
following [orms

o="TeRe (7701 ©2)
a_(‘ﬁ —ﬁ& v [ A pial D
3y Re [Aete] (C.3)
‘I( Z;”:wTU Re [Bei«!] (C.4)
o(t, <=r>)--——RTn Re [fI(@)et«]=finite quantity
w
(C.5)
where
y=wr/a (C.6)
(see ref. 1). The quantities A and B are dimen-

sionless complex constants, assumed to be speci-
fied. The magnitudes of 1 and B must be small
compared to one, in conformity with the require-
ment of small disturbances imposed in the
lincarization.

Substitution of equation (C.2) into equation
(30) yields

T 117 () =—ixh {[B—H(O)

_! H"(o‘)] By~ [ b= [H'(.a)
Y Jo

+ H"'@)] 1+ [ " ELG—)] [U’(z'/)

threa]a} e
where
k=8(y—1)a T4/ Rpyy (C.8)
and

(C.9)

b=a/w

The boundary conditions on the complex dimen-
sionless quantity 77{y) are found from cquations

a0
o0



34 TECHINICAL REPORT R—138—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(C.2) to (C.5) and are

oy —Aa (C.10)

I1(=)=finite quantity (Can

In reference 1, approximate solutions of equation
(C.7) are found by replacing the 7%, funection with
an exponential.  Here we will consider an approx-
imation of the form

I
F.(n) le) m e (C.a2)
=
Solutions ean then be found in the form
J
Hap=>", Ciecw (C.13)
=1

Substitution of equations (C.12) and (C.13) into
equations (C.7) and (C.10) and equating the co-
efficient of cach resulting exponential term to zero
yields the relations

2

2
2o & Cy
1+Cj Cuhb <1+7) I= m, 2 nlbq =0

forall; (C.14)
T/ AN b N o ]
> (1 +;) (mb +c,—) =B  foralll (C.15)
S, 0 (C.16)
=

Specializing to the case L=:2, equation ((".14)
can be written as

AN 2
(1 '{"“) Cj
H ) iKg "2
my 2 712 ﬁ)
((7.17)
where
K=21 (C.18)
Ny
and
B=nb (C.19)

Equation (C.17) is a sixth-degree algebraic equa-
tion in ¢;.  The six roots are then the quantities
¢; In the solution represented by equation (C.13).
The integro-differential equation for 77(y) can be
converted to a purely differential equation of
sixth order. Tt follows that all solutions of the

integro-differential equation are contained in the
general solution, equation (C.13), with J=6.
Since the characteristic equation (C.17) contains
¢, only in the combination ¢5, hall of the roots will
have positive real parts. The corresponding
values of €; must be sel equal to zero to satisfy
the boundary condition, equation (C.11). Taking
the first three roots to be those with negative real
part, the J in equation ((.13) can then be sct
equal to three, and equations (CU.15) and (C.16)
can be solved for the amplitudes €, %, C; in
terms of the known quantities A, B, ¢, ¢, ¢

I my/m, is small compared with one, the Toots
of equation ((".17) can be found by an expansion
aboul my/m, equal to zero.  The lowest order part
of the result is that obtained by setting the right
side of equation (C.17) equal to zero. This is the
characteristic equation used in reference 1 and in
the text of the present work. Tt has previously
been shown that this equation can be solved to a
good approximation by an expansion for small
values of vy—1. This expansion will be used
here, since it greatly lacilitutes the manipulations.
The results from the double expansion are

o=—1< 1+G7
K
— B (=)
[ Gee) Jn—ia
+ higher order in (y'v—1) and my/m,
(C.20)
B —
Cs \1-—135’7 +\\’Y
+7 IXU—'IAﬁ)

s ﬁ[l H(28) Ji1—ial

+ higher order in (Yy—1) and my/m
(C.2n
c ___(7_%3) L KB (npfny)*—1]
O\, 2m, (ny/ny)*—1—iKB(ny/n)?

+ higher order in (y¥y—1) and m,-/m,} (C.22
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where
J/
a——TBY (C.23)

14— g
y+1

Specializing to the case of constant wall temper-
ature (B=0), equations (C.15) and (C.16) can be
solved with the aid of the double expansion to
obtain

01:‘5“1+0(\7—1)+0[(\‘ 1) —] (C.24)

T

] (C.25)

m,

omlG)]
[1—1}&{3)( >~1:| [1—ia]

nﬁ—'>[ ”’6> -]

(C.26)

C=0(F—1)+0 [m—n

m

Ci=—(v—1) _77_’1-3

+ higher order in (¥ —1) and my/m,

From these results it can be seen that il my/m,
is small compared to one, the values of ¢, e, Cy
and C, will differ only by small amounts [rom their
values at my/m;=0 for all values of K and 8.
Such a change in the wave speeds could cause a
nonuniformity at large x because it is a cumulative
effect.  For the response of a grey gas to an im-
pulsive motion of the wall, however, it can be
shown that such a nonuniformity does not occur.

This is so because the 0 [%‘ ((‘?41)] corrections
1

to the wave speeds go to zero at the large values
ol B involved in the evaluation of the solution atb
large . In other words, the component waves
with appreciable wave speed discrepancies are
sufficiently damped that their amplitudes become
negligible at large x, where their positions are
given inaceurately by the single-exponential ap-
proximation of the attenuation factor. TPossible
nonuniformities of this nature should be considered
in applications involving nongrey gases or wall
boundary conditions different than those used here.

The amplitude C; goes to zero when my/m, is
zero and will cause only a small change in JI(y)
when my/m, differs from zero by a small amount.
However, sinee ¢; is equal to (—ny8/n;) to lowest

order, derivatives of Cy exp (esy) can become large
at y=0 when n,8/n, is large. Substitution of
equations (C.20) to (C.26) into cquation (C.13)
and differentiation three times with respect to ¥
leads to the expression

H''(0)=—iAd—(y—1) zl A
o] )
o () o () (1

torm- o[ (i-n ()] wan

The neglected terms are small compared to those
retained for all values of the parameters. The
term proportional to my/m; is small compared to
the first for small mg/m; at all values of the
parameters, except when n,8/n, is large compared
to ome. For that case equation (C.27) can be
simplified to

Y ()= —id— (T —1) 32
&[G e
[(141{5) (E) —1] 1—ia) ™

Using equations (C.2), (2), (3), and (4), it can
be seen that the first derivative of temperature,
second derivative ol velocity, and third derivative
of pressure (evaluated at the wall) cach have terms
proportional to 7777(0).  Hence these and higher
derivatives of 7, u, and p become singular at the
wall as (n28/n)) .1ppm‘uhes infinity.  However,
the region of nonuniformity becomes exponentially
small, since the C; term involved is multiplied by
exp [— maB8/n)yl.  An effect of this type is pre-
dicted inreference 1. The basis for the prediction
can be seen from equation (C.7), in which the
first term on the right is proportional to I (by).
The first derivative of the 77, function is logarith-
mically singular at a zero value of its argument,
whereas the first derivative of the integral terms
of (\quulion (C.7) is not. Tt follows that the
only remaining part of the equation, the quantity
IT(y) + I (), must match the singular behavior;
that is, 77" () must be infinite at y=0. Further
details on the form of 7I"/(y) near y=0 are

B+... (C.28)
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given in appendix D, where a procedure [or
obtaining an exact solution is discussed.

To determine at which values of 8 and y the
foregoing nonuniformity becomes important, spe-
cific values of m and » are needed. Values of
my, My, Ny, and 7y have been found which satisfy
the following requirements:

1
(e fmae ), o= I3(0)=1.0
)
f (mlf“nm-{—mze*nzﬂ)e‘ngndn: r Ez(n)c_"l’”lln

0 Jo

3
f (m‘p_"’"+'"2€—"2")nrfn:f Ez(ﬂ)ﬂ’]ﬂ:%
JAO Jo k

(4)

Teast squares fit of me™"11-+mye 27 to Fy(y
q

The first two of these conditions were chosen to
obtain a good fit of the approximating funetion
to Ey(n) at small values of 5. The third require-
ment insures g correct result in the Rosseland

limit of strong absorption. The last condition
is self-explanatory. The resulting values of m
and n are

m;=0.745
ny=1.532
m,=0.255
ns=20,

The second term in equation ((C.28) has its largest
~alue when KB and ¢ are of order 1. For a value
of v==7/5, and the Toregoing values for m and n,
the second term begins to execed the first at about
B—1.0. The region of nonuniformity at that
point is confined to values of y less thun about
0.1 and is confined to y less than 0.1/8 for larger 8.

Three types of possible nonuniformities arising
from the present approximation procedure have
been disclosed in the investigations contained in
this and the preceding appendix. The most
serious are probably those that can occur at large
distance from the wall. Tn the classieal acoustic
theory, nonuniformities of this type have heen
treated by a coordinate stretching process. The
details of the procedure for a similar program in
the present problem are {ar from obvious.



APPENDIX D

EXACT SOLUTION FOR A GREY GAS

Tn this appendix the validity of the exponential
approximation of the attenuation factor will be
further investigated for the case of a grey gas and
oscillatory boundary conditions. Equations (C.1)
through (C.7) of appendix C are the exact relations
for this case. Equation (Cl.7) is a linear integro-
differential cquation similar to thal appearing in
the Milne problem (isotropic scattering of radia-
tion or of slow neutrons; sce, e.g., rel. 30). A
method previously employed for solution of the
Milne problem could therefore be used here.  This
method, which is exuet, utilizes the Fourier trans-
form plus the Wiener-Hop[l technique for factoring
the transform.  Inreference 32 a solution based on
the Wiener-TTop[ technique is given for a problem
even more nearly analogous to the present one
than the Milne problem. An investigation of
equation (C.7) by this method would be desirable,
but will not be made here.  Tustead, an alternative
procedure will be used which yields information on
the properties of the solution at small and large
values of . No numerical examples will be given.

Il equation (C.13) is substituted into (C.7), and
the integral expression equation (C.1) substituted
for the F, function, it is found that the resulting
relation ecan be partially evaluated by an inter-
change ol the order of integration. A solution
would then be obtained by setting the coeflicients
ol each exponential term equal to zero, but there
is an additional part containing an integral of a
function of x times exp (—by/w) which cannot be
zero.  This suggests that the solution is of the
form

J 1
To)=>2 Creciv f G@e""do  (D.1)
= 0

When the procedure just deseribed is applied using
this expression, the result is
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In evaluating the integrals over p on the left of
this equation, the principal part was taken of a
singular integral. The same must be done in
evaluating the singular integral on the right side.
since the two singularities cancel each other.

If the dummy variable of integration, 4, on the
left side is changed to g, equation (I).2) can be
written as

Z‘,{H< —Mb(1+ )_2+ :n,(jpm
_fu 0( {1-{—;—11\}) (1+b2
[2—M In (1{") } Glu) ixb [—B
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This equation will be
relations hold

satisfied i the following

b—e N T
m})j]—o for all J

(D.4)
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Equation (D.4) is a transcendental equation
and has an infinite number of roots. However, by
appealing to a principle requiring that the solution
be a continuous funetion of the parameters as in
reference 32, and excluding those roots with posi-
tive real parts, it is found that only two roots
survive. The properties of these ean be conven-
iently studied using an expansion for siall values
of v—1. The results are qualitatively similar
to those given in reference 1. One of the roots
Ieads to a wave speed which differs only slightly
from that of a classical acoustic wave as in the
approximate solution. For values of xb greater
than one, the propertics of the other rootl are also
given correctly by the approximation. However,
the exact characleristic equation (DD.4) indicates
that at values ol «b somewhat less than 1.0, the
sccond root disappears. The approximate solu-
tion docs not reproduce this effect, but instead
indicates that the wave speed approachies infinity
al this point. The approximate result is qualita-
tively correct in spite of this difference, since the
integral term in the exact equation (D.1) corre-
sponds lo waves with an infinite wave speed, and
it is this term that is simulated by the second root
in the approximate solution for small values of the
product «b.

Equation (D.5) is an integral equation for the
amplitude G@) appearing in the integral term of
equation (D.1). No solution has been found.
However, if it 1s assumed that one exists, some of
the properties of the solution of equation (C.7)
can be deduced from the form of equation (D.1).

I an asymptotic expansion of equation (D.3)
for small # is considered, it can be secen that the
expansion is of the form

GO =af*+b6 In 0-+aP+ ... (D.6)

Substitution of this into equation (D.1) shows that
the third derivative of 7I{y) will be singular at
y¥=0 as anticipated in the approximate considera-
tions of appendix C,
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Substitution of equation (I2.1) into the bound-

ary condition (CC.10) yiclds

S ¢,C—b f GO g9 4 M.7)

=1 Jo 8
This relation together with equation (D.5) must
determine the values of the amplitudes €, and
C; if » unique solution exists.  Sinee the funetion
G(8) has not been found, exact values of the
amplitudes € and C; are not available.  Although
the values of these amplitudes are not known,
the functional dependence of the solution for
large y can be found from equation (D.1) in cases
where the real part of ¢, or ¢, is greater than —§,
In those cases the unknown integral term will be
exponentially small compared to the leading term,
which is of the complex exponential type. The
wave speed parameter for this functional depend-
ence at large y is known exactly, since it is a rool
of the characteristic equation (ID.4).

The characteristic equation (D.4) is contained
m a result given in reference 7. There the equa-
tion is more complicated, since it includes the
effects of viscosity, thermal heat conduction, a
finite velocity of light, and a {requency dependent
absorption coefficient. No attempt is made in
reference 7 {o deseribe the source of the disturbance
or include the effect of a wall. Instead, the
development is bused on conditions far from any
obstacle.  Also the investigation of the roots of
the characteristic equation is confined to a study of
the one root corresponding to a modified-classical
wave.

Since an exact solution of the present problem
would be obtained il equation (D.5) could be
solved, it is of interest to find whether an equation
of this type has been diseussed in the literature.
As it stands, equation (D.3) contains the two
unknown constants C and @, If a solution to
the complete problem exists and is unique, €
and 'y must be determined by equations (D.5)
and (D.7). Tt can be seen in equation (ID.5) that
G(1) must be zero because of the singularity in
the log term.  Using this fact, a relation between
the given constants .1 and B can be found which
will result in (,=0. A similar relation leading
to (h=0 can also be found. When cither of these
conditions is satisfied, a fundumental solution
is obtained containing only a ), term or only a
(; term plus the integral term involving G(8).
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The integral equation for G(f) in either case no
Jonger contains unknown constants. For arbi-
trary values of 4 and B, the solution will then bhe
a superposition of the two fundamental solutions.
The integral equations for ¢/(8) corr esponding to
the two Fundmnontul solutions ean be expressed
in terms of the functions 7,(8) and f,(8) as follows
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G(9) is given in terms of the solutions of these
equations, and the specified constants .1 and B,
by the relations
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The amplitudes C; and € are determined by
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Tor values of «b such that ¢, does not exist, the
correct Tesult is obtained by setting e;=0. Tt
then follows that £,(8)==0 and ;=0.

Solution of the complete problem now depends
on solution of the integral equations (D.8) and
(D.9) for the unknown functions f1(6) and f,(6).
These two independent equations are essentially
of the same form. Tt was pointed out to the
author by Harvard Lomax, of Ames Resecarch
Center, that a general solution for equations of
this type is given in reference 33.  However, onc
of the conditions used in the derivation is not
satisfied by equations (D.8) and (D.9), because
of the singularity at 8=1 in the log terms.  There-
fore, it is not known whether the solution is valid
in the present case.  Alternatively, if it is assumed
that f(8) is bounded in the interval 0<8<1, an
approximate solution could be obtained by means
of a truncated expansion of f(8) in Legendre poly-
nomials, The result from this procedure would
be of interest for comparison with the results from
the exponential approximation of the attenuation
factor used in the text, but the matter will not be
pursued here.

A—l—ybf fl(e)(le] (D.13)



APPENDIX E

EVALUATION OF INTEGRALS FOR LIMITING CASES IN THE IMPULSIVE-PISTON PROBLEM

In the text it was shown that, for the impulsive
problem, all disturbance quantities are zero at
slightly positive values of . The amplitudes of
steps which occur in the velocity, pressure, and
temperature were also evaluated. TUsing similar
methods, the variations of the flow quantities at a
point far from the wall ean be found. The
behavior of the solution for very large values of
the radiation parameter % can also be found in
closed form. Finully, a result for very large r can
be derived.

For the velocity at a point fur from the wall,
the quantity to be evaluated is

lim u(z E)
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As discussed earlier, the integral near »=0 is
tuken on an infinitesimal quarter cirele below the
origin. We wish to show that the contribution to
the integral from values of » greater than £~ goes
to zero in the limit as £ goes to infinity. This is
50 because the real parts of ¢jvg and e go 1o minus
mfinity in the limit, but the proof requires a
knowledge of the behavior of the real parts of ¢,
and ¢; as functions of » for all k.

For the purpose just stated, it can be shown that

v—1
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where ¢(£) is a quantity which goes to zero in the
limit as £ goes to infinity. Tt follows that
40
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and k=0, % finite

Since A, and A, are algebraie functions of v, the
contribution to the integral from integration in the
range y=£~""" to »=¢ will go to zero exponentially
in the limit as & goes to infinity provided that k is
finite and nonzero.

The contribution to the integral from values of »
between ¢ and « ecan be shown to be zero in the
limit by expansion of the integrand for large ».
Then equation (E.1) becomes
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This integral can be evaluated by expansion of
the integrand for small ».  Expansion of equations
(82), (83), (88) and (89) for small » yields
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Substitution of these into equation (E.2) gives
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The integral of the 0(y%)— term is less than
0(¢~¥%) and hence goes to zero in the Jimit,

leaving
fg 1/1

Iim u(r,§) =lim Re
ttr—p ¥ ‘]”
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By reversing the steps leading to this expression,
the full interval of integration can be restored and
the result written as

h m A8 —hm{ f
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The second term can be evaluated by contour
integration and corresponds to a unit step at
r=¢. In this process the path of integration is
taken to pass below the origin as discussed earlier.
The first integral in equation (E.3) can be found
in reference 34. The final result for the velocity
at large distance from the wall is

u(r, ) 1

— =3 1-+erf I: - kg:l
7+1
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Equation (E.4) indicates a smooth transition
from a value of zero at 7=0 to a value of 1.0
when 7 becomes large compared to £ The transi-
tion is essentially completed within a range of

values of r from r=§¢— \/( >L£ to r=§+

I7v—1N\ . .
\/ <_y’+—1> k£, which is a narrow region compared

to the large distance from the wall under
consideration.

In the derivation of equation (E.4), the integral
of the .4, term was found to be zero. It is some-
what surprising that an integral involving only
the A, term yields a nonzero value of the dis-
turbance at r—£<0. The results from the solu-
tion of the oscillating piston problem indicate that

the maximum possible velocity of the modified

classical waves is the isentropic speed of sound a,.
In the present problem the .4, term represents the
contribution from the modified-classical wave sys-
tem, and in terms of the dimensionless coordinates
7, £ 1t follows that the maximum velocity of such
waves is 1.0.  The region r—£<0 is a part of the
r, £ plane which cannot be reached by waves
initiated at =0, £=0 and traveling at a maxi-
mum speed of 1.0. The A; term, on the other
hand, represents the contribution from the radia-
tion-induced wave system. The oscillating-piston
solution indicates that the maximum speed of
these waves is the velocity of light (taken to be
infinite). Hence the region 7—§¢<0 can be
reached by waves associated with the /A, term,
but not by those associated with the A, term.
The foregoing considerations tend to cast
doubt on the choice of the real axis in the complex
v plane as the path of integration for inversion
of the Fourier transform of u(r, £. Neverthe-
less, this choice was shown to correspond to the
boundary conditions and initial conditions for
the problem under consideration (in the discussion
following equation (67)). In that discussion it
was noted that a branch cut associated with the
dependence of ¢; and ¢; on complex values of »
could be disregarded as far as the integrand is
concerned. This is true because the quantity
A; exp (evf) +A4; exp (cvf) is continuous across
the branch cut in question, which is the one in
the lower half plane. However, A, exp (¢,;#¢) alone
is not continuous across this cut, but instead
interchanges roles with the other term ; exp
(c,vf) in passing from one side of the cut to the
other. As a result, if we wish to compute the
contribution from the modified classical wave
system alone, the path of integration must be
altered to include an integration around the branch
cut in order to insure that the disturbance as-
socinted with this wave system is zero for negative
time. An integration around the branch cut
would also be required to evaluate the contri-
bution from the radiation-induced wave system
alone. This additional contribution from the
A, term would not be zero, even though the
integral of the A, term along the real axis is
zero. Instead, the additional contribution from
the A, term is just equal and opposite to the addi-
tional contribution from integration of the A,
term around the branch cut. This last fact
explains why, in evaluating the total disturbance,
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the integration around the branch cut can be
dispensed with. But it also means that part of
the total disturbance arises from the A, term,
even though the integral of the .1, term along the
real axis is zero. Then it is the radiation-induced
wave systemn which is responsible for the disturb-
ance at r—£<0, a region which cannot be reached
by the modified classical waves.

The corresponding expressions for pressure
and temperature far from the wall are similar to
equation (I.4); namely,
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The term of order (kr/£%) in equation (E.G) comes
from the A, part of equation (80). For very
Iarge 7 of order £/k, this term cancels the other
part of equation (E.6), and the perturbation
temperature returns to zero. The velocity and
pressure do not change in this process. Because
of the homogeneity of the gas and the presence
of the radiative heat transfer process, the gas
must reach a uniform state at very large time.
In this state the veloeity and temperature of the
gas must be the same as the velocity and tempera-
ture of the wall. Since the wall temperature
is beld fixed while the wall is moved impulsively,
the final perturbation temperature is zero. It
is interesting to note that the final perturbation
pressure is the same as that which would occur
in the absence of radintion, even though the final
temperature is not.

Another evaluation can be muade in closed form
as a check on the numerical calculations which
will be discussed later. At very large values
of & (high gas temperature) the radiative heut
transfer will tend to hold the temperature con-
stant. Under this condition, one would expect
the disturbance to propagate at the isothermal
speed a¢/vy. In terms ol dimensionless coordi-

nates, the velocity transition would then be
expected to occur near the line r=+%& Tt ecan
be shown that this is so for intermediate values
of £ but not at very small or very large £ For
this purpose equation (78) can be written as

B

+ f (Alleclvz_*_[lz(:czv{)efvr ([_V]
o i 14
(E.7)

u(r
Iim — (7, 22%=lim Re
ko= l ko

:114'[2#‘[3

The first integral, which includes integration along
an infinitesimal quarter circle about the origin,
can be evaluated in closed form for large k. The
second integral can also be evaluated by means of
an expansion valid for large #. The remaining
integral can be shown to be zero in the limit as %
goes to infinity with £ fixed.

In disposing of the first and last integrals, a
knowledge of the properties of the quantities
¢; and ¢; as functions of », k, and v is needed.
Except for an infinitesimal deviation Delow the
origin, only real values of » need be considered.
Values of & from zero to infinity, and values of v
between 1.0 and 2.0 are of interest. From equa-
tion (81), the following properties can be deduced
for the foregoing ranges of v, &, v:

1. The complex quantity ¢; has no singularities

(when the value at v==0 is properly defined).

2. The real part of ¢; has zeros at »=0 and at

y= 0,
The imaginary part of ¢, has no zeros.
The quantity ¢; has a singularity at »=0,

5. Both real and imaginary parts of ¢, have

zZeros at v= o,

6. The real and imaginary parts of ¢ and ¢,

are negative or zero.

By [actoring out the singularities and expanding
about the singularities and zeros, it can be estab-
lished that
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where a,, b, a,, b, are positive finite nonzero num-
bers which can be chosen to be independent of
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k, and y. To establish that a and b can be
1nd0pendent of v and k for values of k QppI‘Od(‘hllW‘
zero or infinity, use can be made of a power series
expansion of equation (81) in powers of (v—1).
The resulting power series converges for the values
of v, k, and vy under consideration.

The content of equations (E.8) and (E.9) can
be expressed by the relations

, kv
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where b, and b, are independent of », k, and «.
Equations (E.10) and (E.11) can then be used as
upper or lower bounds with appropriate values of
b, and b,. These expressions for ¢, and ¢; are of
the same form as those resulting from a truneated
expansion for small (y—1) used in reference 1.
The same procedure can be applied to the
expressions for A, and 1, using equations (E.10)
and (E.11) to obtain the relations

N O s S
Ay byly—1) 2= l()l‘:_(v‘” ?,'fy)z (E.13)

These expressions provide upper bounds for the
quantity 1—4,=21, with b; independent of », £,
and .

To evaluate the first integral in equation (E.7),
equations (E.10)-(E.13) can be expanded for small
v. The results are
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Substitution of these into equation (E.7), replacing
kv with » and expanding for small values of r/k
and ¢/k yields
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Evaluation of this integral, including the in-
finitesimal quarter circle about the origin, leads to

the result
n=ptino (7 })

Evaluation of the third integral in equation
(E.7) can be accomplished by expansion of equa-
tions (E.10)-(E.13) for large » as follows:
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The integral of the 0 (;1—,) % term goes to zero in

thelimit. Theremainder can be evaluated by sep-
arating the argument of the second exponential
factor into real and imaginary parts. Aflter the
substitulion s=w/k is made, the result is
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Since b, is of order one, this becomes
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For the remaining part of equation (E.7), the
exact expressions for ¢ and /A given in equations
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(82), (83), (88) and (89) must be used. How-
ever, an expansion for large £ with » fixed can be
made as follows:
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By breaking the integral into two parts, 1/k to 1.0
plus 1.0 to &, and expanding the exponentials in
power series, the term containing .1, is found to be
at most of order ¢k. Similarly, the higher order
term in equation (E.23) can be shown to lead to
terms which are at most of order+1/(y—1)%¢.
Then equation (E.26) becomes
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By reversing the procedure in which the 7, and I,

integrals were removed, the full interval of inte-
gration can be restored and 7, written as
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This integral is of the same form™as that evaluated
in equation (E.3).
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Finally, the velocity at large £ is found to be
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The corresponding results for pressure and tem-
perature are
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Equations (E.29)—(F.31) represent the isothernial
disturbance propagating at the isothermal signal
velocity as was anticipated. The error function
transition oceurs in a narrow region with width of
order £/k, which goes to zero in the limit as k goes
to infinity with £ fixed at a finite, nonzero value.
In the derivation of thesec relations, it was neces-
sary to neglect terms of order r/k, &k and
N1/(v-D%s In fact, the results given here do
not apply at values of ¢ of order £, where there
is a boundary layer. Also at large values of 7
and £ of order k, different results are obtained.
Expressions valid for small ¢ were given in
equations (94)—(96). Those results are also valid
for the present case of large % provided that # is
small compared to £~'. The velocity, tempera-
ture and pressure jumps occurring along the line
r=£, evaluated in equations (97)-(99), are still
correctly given in the case of large k. These
discontinuities are within the boundary layer
which develops for large k, since they decay ex-
ponentially in a distance of order k~! from the
wall.  Also the results for large ¢ given in equa-
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tions (E.4)-(E.6) are valid in the limit as k goes to
infinity, with £ going to infinity faster.

The values of velocity, pressure, and tempera-
ture for very large timie can be found by taking
the limit as 7 goes toinfinity. The factor e”” then
oscillates rapidly, and the contribution to cach
integral vanishes for all values of v except those
near singularities in the remaining factors of each
ntegrand. The only such singularities are at
»=0. Expansion of equations (82), (83), (88),

and (89) about »=0 and integration of equations
(78)—(80) yields
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APPENDIX F

APPROXIMATE CLOSED-FORM EVALUATION OF THE VELOCITY RESPONSE

TO AN IMPULSIVE

In reference 1, the response to sinusoidal motion
of the wall was discussed with the aid of a trun-
cated expansion for small values of (y—1). The
same procedure is useful for obtaining further
information on the impulsive-motion problem.
Equations (S8) and (89) can be interpreted us an
expansion for small values of (y—1) in addition to
the previously given interpretations of small »,
large », and large k. The expansion converges
for values of v between 1.0 and 2.0. If terms of
order (y—1)* are neglected, equations (88) and (89)
become

. kv
ev=—i [ 1= =) [ 0t ?
[ t1)2 . flv

Further expansion of the square root factors

yields
y—1 kv
[l _( )v ——1/w+1+0(7_1)2]

(v-+1)/2 1 kv
€= /1, VAIA)[] ( ) i1 00— U]

These expressions for ¢, and e are identical to
equations (68) and (69) of reference 1, except for
the use here of the variables k& and » in place of
K and p. The equivalence can be established
with the aid of cquations (39), (40), and (76)
herein, and cquation (66) of reference 1,

Since  y—1=(\vyFD)(Vy—1)=2(y7—1)+
0(¥¥—1)% the expressions for ¢, and ¢, can be
written alternatively as

o=— [1—(\7 1 5 0 ] (F.1)

— kv 1

[y - tky
€= ’\"/l’(}'—’l’k) l:l-}—(\'y D vE—ikv+1

+0(W~1)2] (F.2)
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MOTION OF A PISTON

The last forms are chosen instead of the previous
ones hecause the resulting truneated expansion is
exact for F—>o as well as for £—0, v—o, and
v—0. Using cquations (F.1) and (F.2) in a cor-
responding expansion of equations (82) and (83)
yields

11— A, 207D =DV G—iE )
iz 1— y (V2—';A'V+])2
+0(y—1)2 (F.3)

The factor v in the denominator could be deleted,
but this would increase the value of the error in
the truncated expansion by a rather large lactor
for a value of y=1.40. The coefficients of the
higher order terms in equations (F.1)-(F.3)
have maximum values of approximately 1.0 and
are zero for limiting values of £ and ».

There is another precedent for an approximation
of the foregoing type in addition to that afforded
in reference 1. The isothermal signul speed is ao/vv
where a, is the isentropic speed of sound. Thus
an expansion for small values of (yy—1) can be
interpreted as an expansion for a small fractional
difference between the isothermal and isentropie
speeds. In reference 35 a similar approximation
1s introduced for the case of a chemically relaxing
gasin the absence of radiation. There the approxi-
mation is based on the smallness of the fractional
difference between the frozen and equilibrium
speeds of sound. Comparison of the resulis of
reference 35 with the exact results of references 10
and 31 shows the approximation to be accurate to
within a few percent for the cases considered.

Estimates of the error introduced by this approx-
imation in the present problem can be obtained
by repeating the closed-form evaluations for limit-
ing cases previously made. For the jump condi-
tions at r=¢, the following results are obtained for
comparison with equations (97)-(99):

[}4(&4{;, £ U(-E—Ye,s)]

lim
e

=~ VIDRLO(7—1)? (F.4)
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_PEe )
potol/

— e~ WATDRLO(\F—1)?

lim [—RT’ (Efe’ E),_I‘)T'(E—f, 55—]
-0 (1‘0(,,‘ (l‘uL‘

Iim I:p,;('s +e £)

€0 pottol/

(F.5)

10’?)"““‘”*‘”“%0(\"«7—1)2 (F.0)

The comparison shows that equations (F.4)~(I.6)
arc exact at £=0, but the decay factor in the exact

—
N 72—}—1 ~—1)kg rather than

equations is exp

exp— (V¥ — 1)kt as given by the approximation.
For y=17/5, the factor (y/y+1)/2 is equal to 1.092.
The discrepancy does not lead to a nonuniformity
in the approximation even at large values of kg,
since the discontinuities die out at large k& For
~="T7/5 the largest crror occurs at kf=5.46 where
the approximate decay factor is 0.368 compared
to the exact value of 0.403. The maximum error
is then 0.035, which is 3.5 percent of the total
velocity transition in the disturbance (equal to the
dimensionless wall velocity which is 1.0).

Using the approximate equations (F.1)-(17.3),
the disturbance at large ¢ is found to be

lin 11(1' E) 1 L+ fli ]
e i « \(\’Y—l)AE

+0Gy—1)F (F.7)
N R T,
Eg]m P0(0[7 i e 2\(\’7),'__1)".& }
+0(y—1)* (F.8)
lim BT Q Ly=l1 ler'I’[ :‘}
Eo® (l(i 2 v \(\'Y_I)Af
+o(Vvy—1)* (F.9)

Comparison with the exact equations (1.4)—(.6)
shows that these results from the truncated expan-
sion are the same except that the fuctor+' (V¥ —1)ke
in the denominator of tlle mﬂrumcnl of the error

Vy—1Dkt in the

3 ’Y+
+]
equal to 0.910, Iopreseutm(r an error of about 10
percent. However, again the maximum resulting
error in the perturbzl tion cuantities is a considera-

function is replaced by

+1

exact equations, For y=7/5, the factor

bly smaller fraction (2 percent) of the total change
in the transition. Since approximate expressions
for the wave speeds were used to derive equations
(F.7)—(F.9), cumulative errors might have been
expecied to cause large diserepancies al £->w.
However, this does not occur because the compo-
nents with the largest errors in wave speed are
sufficiently damped that their amplitudes become
negligible before the error in position beecomes
appreciable.

The approximate results for the limit as k
goes to infinity with 7 and £ fixed are

Iim u(s —S)-—l m ;]{]%«orl'l: —\t ]}
koo U koo 2 (\ '-y——l)g 'A

lim P8 =lim —] {1 - mfl: L ]}
oy U koo 2VY 3y (\ ’Y“_I)E'A
+0Gv—1)* (F.11)
lim LG (T'E):O(\r‘?_l)z (F.12)

k> (10[“Y

Comparison with the exact equations (E.29)—
(E.31) shows these results to be correct except
that the factor 4/(y—1)g/k in the denominator
of the error function is replaced by

<\’Y— ])(\’Y—]) I3

in the exact relations. With y=7/5, the factor
(Vy41)/247 is equal to 0.923 representing an
error of 8 pereent in position, but only 2 percent
in value at a given position.

The results for the limit as 7 goes to infinity
compared with the exact equations (E.32) and
(E.33) show the approximation to be exact n
this limit. The approximate counterpart of
equation (E.34) is correct to 0(y¥—1).

The only remaining exact evaluations available
for comparison are those for the limit as 7 goes
to zero given in equations (94) (96). There it is
scen that the perturbation velocity, temperature,
and pressure are zero ut r-—0, except at the wall,
where there are discontinuities. The trunecated
expansion for small values of (y—1) yields small
but nonzero values of the perturbation quantities
at 7<0. This slight inconvenience can be re-
moved without affecting the results for the other
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limiting cases as follows: In the derivation of
the result for small 7 in the exact case, use was
made of the fact that the disturbance is zero at
negative 7. The factor e was replaced by
e’ —e~I7t the second term leading to zero
contribution because it corresponds to an evalu-
ation of the original integral at negative values of
7, where the disturbance is zero. This alteration
can also be made in the exact equations (78)-(80),
and the results will be unchanged for all values
of r and £ In other words, equations (78)—(80)
can be replaced with the relations

MO L7 (et gty (et ewiety
(F.13)
(F.14)
BTGO L[ T4y
Cad 27 Y/ €
+(1+"5> A M] ety & (u15)

When the truneated expansion for small (vy—1)
is used in these equations, the resulting perturba-
tion quantities are zero at 7<{0, as they should be.
It can be shown that the evaluations of the other
limiting cases using the truncated expansion are
not affected by this change. Hence the previous
comparisons between approximate and exact
results remain valid when equations (F.13)-(F.15)
are used in place of (78)-(80).

To obtain a qualitative view of the over-all
flow field, either further approximation or machine
computation is necessary. Both methods will be
used.  Only the velocity field will be considered
in this study. For the machine computations
one might expect that the integrals could be
evaluated without resorting to the expansion for
small values of (y/y—1). However, this is not
feasible, if a machine program valid for all values
of the parameters and variables is desired. TFor
such computations, considerable knowledge of
the properties of the integrand aure needed for a
proper design of the integration procedure. Also
the machine computing time required is not negli-
gible. Since the truncated expansion for small

AERONAUTICS AND SPACE ADMINISTRATION

values of (V¥—1) yields qualitatively correct
results, utilizes a simplified integrand, and de-
creases the required machine computing time by
about a factor of ten, it will be used here.

Using equations (F.1)-(F.3), equation (F.13) ean
be writlen as

MEO_nln ) i)

I T =24-0(yv—1)* (F.16)
where
U(r,8) 1 I””
U — 2=)_.
(eiw_e—mrg)e—ivse-(\i¥—1)k6u2,’(1+v2—1kv)(1[,_" (F'17)
u 7, &) 2G/v—1) @
U ¥ 2r
[* e T DD ert—er)
J-aw (142 —4kv)?

(F.18)

An integral of the form of equation (F.17) cannot
be evaluated directly by machine computation
because of the singularity at »=0. Also the
infinite interval of integration cannot be treated
by machine calculation. Therefore it is necessary
to subtract terms from the integrand which match
it at »=0 and at large ». Such terms should at
the same time be simple enough that they can
be integrated in closed form. I care is taken in
the sclection of the terms to be subtracted, a
uniformly valid closed-form approximation may
be found.

In equation (F.17), the quantity to be matched
is the last exponential fuctor, which can be
written as

e~ (NF—DEB2/ (1472 —ik) — o= X2/ =it) +i/0]  (F.19)
where

X=(r—1)kt (101)

b= (k/2) -+~ (k/2)*+1 (102)

An approximation of equation (F.19) has been
found which yields correctly all of the results for

the limiting cases previously discussed. This
approximation is
e—szllfv—iD)(v-!-i,’b)]z(1__(,—.’(/02 o Xt
— 2 - —X,262 — ¢
F (e X g X)X TV L =X (F.20)
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Equation (F.20) was arrived at by considering the
form of the solution for large &. In this limit, the
quantity b can be replaced by k. However, it
can be shown that the approximation remains

valid for small % if b is used instead of £ By -

adding and subtracting the terms on the right of
equation (F.20) in the integrand of equation
(F.17), the following results can be obtained

u(gvg)_u4(UT E) u\(T E)“]-O(\ _1)2 (Fgl)
where
Uua(r, §) _i
U
r (etrr—e =M e (1 — ~X/b2)(,—xv"’
(e e 2 (22)
14
and
,uw([? E)=__2?;r (ez,.r e ( — vt

X2 [~ i (wF il —x% ,-x2
{(3 v =i (p i/ )]_(1._.6 / )e ¥

+ (e—X/bz_e—X)e—XvZ/bze—in/b+e—X} l

_2Gh—1) W= k=1 =) e peps
’ Tty (et — E))([V

(F.23)

In equation (F.21) the quantity ux(r, £)/U con-
tains the remaining part of w.{r, £)/U not included
in u.(r, &)/U, and all of u.(r, £)/U.

Equation (F.22) can be evaluated in closed form
using reference 34 to obtain

'U:A(T,E) -
=0 (7<0)

erf

'U;A(T E) 1 _x/p2
vz
gt (1 iy
{ erf [——~b (T—%L11+el'f [b(r—}—f) +- Y]}
2VX 27X

In equation (F.23) the symmetry of the integrand
can be used to reduce the interval of integration
and eliminate the imaginary part of the integrand.

)+e 1G]

—xm2__ P —X)

(100)

Upon substitution of ¢, and ¢; from equations
(F.1) and (F.2), the result can be written

UN(TJ E)_
T—U (=<0)

»2 {142}

uy(r, §) =2 Iﬂn sin 7 €_X RENCIENNER
LT T Jo 14

EXY? Xy, —x? -X
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cos vi— (e —¢ %)X cos [V (E‘i'%):l

2(\’7_ 1) vrals

+= ~ e [e~%1%¢ cos (W pE—0;) —e 2%
cos ()\2VE—97)]} dy (r>0) (F.24)
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A=D1 Con
1= (ENE EEw e (F.25a)

M=1+GT—DE [0+ k7] (F.25D)
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ra=(1+km3)' (F.25¢)
1 .
7'2:\/ %‘—// oy (F.250)
0;_=l tan~! (ZL> (F.25g)
2 ’

ra=[(rs cos 6,—1)?+r3 sin? 6,]"* (F.25h)
9,=tan=1[r; sin 6,/(1—7; cos 6;)] (F.251)
ry=+1+» (F.25))

5= —tan=' (1/v)
0g=—2 tan™! [kv/(1++9)] (F.251)
re= 1+ 4+ k%* (F.251m)
6;=8,+6;— 0 (F.25n)

(F.25k)

Equation (F.24) is now in a form sultable for
evaluation by machine computation as explained
in appendix G.



APPENDIX G

NUMERICAL EVALUATION OF INTEGRALS

Tn this appendix, the results of the numerical
evaluation of equation (F.24) by means of elec-
tronic machine computation will be discussed.
Since the singularities have been removed, the
only remaining difliculty in the numerical pro-
cedure is that associnted with the infinite interval
of integration. The difficulty cannot be removed
by a transformation since there are a large number
of zeros ol the integrand in the interval. In the
originul integral, there were an infinite number of
zeros of the integrand before subtraction of a
function which was evaluated in closed form
(eq. (100)). As a result it is only necessary to
integrate equation (I'.24) over some finite interval,
beyond which the contribution is negligible. Tt
is not feasible to set an arbitiary large interval of
integration, because the required computing time
is not negligible. Therefore the approximate
required limit of integration was found as a funec-
tion of the parameters k, v, and the values of 7
and £ To follow the variations of the integrand
within this interval it was necessary to break the
interval into one hundred parts. The calculations
were then checked by doubling the interval of
integration and doubling the number of points
used. Sinece a large number of caleulations were
made, some effort toward optimizing the program
was made. Tinally a program was devised which
would lead to valid evaluations of equation (F.24)
for values of %k between 0.001 and 1000 and
between 1.0 and 2.0, A semiautomatic process for
choosing the appropriate values of r at which
caleulations should be made for given values of
k, v, and ¢ was included.

For all values of the parameters and variables at
which calculations were made, the part of the
solution evaluated numerically (eq. (F.24)) was
small compared to the total variation in u(r, £/U
(equal to 1.0). Therefore the results from equation
(100) were used in the text to summarize the
findings from the numerical investigation. The
results presented there are replotted in figures 6,
7, and 8 on an expanded scale for comparison with
the more exact numerical computations. In figure
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6 it can be seen that for small % the approximate
dimensionless velocity u,/U is correct to within 2
percent of the total transition. Thesc results
correspond to the data used in figure 4. The
evaluations for intermediate &, used in figure 3,
are compared with numerical values in figure 7.
Here there is a maximum crror in . /U of ahout 12
percent. This occurs at §¢=1.819 and r=¢. The
amplitude of the step at this point and at all other
points is given correctly by /U, but the approxi-
mation overestimates the magnitude of the pre-
cursor to the main part of the disturbance. Figure
8 shows the comparison for large #, corresponding
to figure 5. The discrepancies are similur to those
for intermediute £.

The results from the closed-form approximation
u4/U (eq. (100)) have been shown to be a good
approximation. Therefore equation (100) could be
used as a basis for a qualitative understanding of
the effect of the neglected cumulative nonlinear
terms which would be important at large distances
from the wall. TFor this purpose, values of the
temperature near r=¢ and r=+%¢ arc needed.
These can be found from equation (100) using
equations (2) and (4). The results for the tem-
perature, found in this way, will not be correct in
the entire flow field, hut should be sufficiently
accurate in the regions where they are needed for
the nonlinear correetion.
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Ficure 6.—Comparison of approximate and numerical
evaluations of velocity response (x=0.001).
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Ficrre 8.—Comparison of approximate and numerical

Fietre 7.—Comparison of approximate and numerical
evaluations of velocity response (x=1000).

evaluations of velocity response (x=3.0).



APPENDIX H

RESPONSE TO IMPULSIVE TEMPERATURE VARIATION OF A FIXED WALL

With boundary conditions

0
T,(t)=
\(~):c0nshmt

u(t, 0)=u,(t)=0

-0

>0 (H.1)
(11.2)
and for an initial uniform state, equations (58) to

(64) and (73) to (77) can be used to obtain the
solution
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(H.6)

The variables and parameters have the same defi-
nitions here as in the previous problem (see the
table of symbols in appendix A).

Using the approximation scheme discussed in
appendix F, the integrals can be simplified to the
following forms

1 @©
utr, =g a - [
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where
. ik —
a=—1+(Gy—-1) Vz_?zﬁ] +0LY—1)* (H.10)
1
== 06T (L)

Equation (H.9) can be evaluated approximately,
in a form that can be shown to be correct for all
limiting values of the variables and parameters.
The result is

T8, .
@ ~(] € )

l:l—m'f (égk\):l_*—eﬂ (l—e_%r) (H.12)
\hr

Equation (H.12) indicates that no discontinuities
in temperature develop. It can be verified from
equation (H.9) and also from equation (H.5) that
there is no discontinuity in temperature at r=E§,
where one might be expected. Also the following
qualitative behavior of the gas temperature can
be deduced from equation (IT.12). At a point
near the wall (small ¢ the last term dominates.
This function indicates a rise in perturbation
temperature from zero (at r=0) to a value equal
to the wall temperature, in a time when 7 becomes
of order £7'. This variation includes a nonzero
mitial slope, which can be verified in the exuct
equation (H.5). At a point far from the wall
(6>>>1.0), the first term in equation (H.12) domi-
nates. This function also indicates a rise in
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perturbation temperature from zero at r=0 to a
value equal to the wall temperature at a later
time. But here the initial slope is zero, and the
variation occurs in a region near r=Fk¢2.  Thus, at
large distance from the wall, the temperature
variation assumes the character of a diffusion
process.

No closed-form approximation for the velocity
has been found. However, the following proper-
ties of the solution ean be deduced from equation
(H.7). The velocity disturbance is everywhere
small compared to that associated with the
response to an impulsive wall motion involving
comparable temperature changes. The velocity
goes to zero at all limiting values of the parameters
and variables. No discontinuities in velocity
develop at 7=¢  The last two findings can be
verified in the exact equation (H.3). At a point
near the wall (small &), the velocity rises with a
nonzero initial slope, but eventually returns to
zero. Exactly at the wall, the velocity is zero
at all times according to the boundary condition
for a fixed wall (eq. (H.2)). At a point somewhat
removed from the wall (intermediate §), the
velocity disturbance consists of two parts. One
of these is associated with the temperature
disturbance and, hence, leads to a rise in velocity
near 7=k¢. The velocity returns to zero at
values of 7 large compared to k#. Also, as ¢
approaches infinity, this component of the velocity

disturbance goes to zero for all values of 7. There
is a second part of the velocity disturbance at
intermediate distance from the wall. This com-
ponent has a peak near r=¢ and hence represents
a compression wave resulting from the nonuniform
heating. This wave travels at a speed between
the isothermal and isentropic signal speeds.  As it
progresses, it builds up initially, but subsequently
decays to zero at large distances from the wall
This part of the disturbance also goes to zero at
large ¢ for all values of & There is a small
variation in gas temperature associated with this
compression wave, but it is of order (ty—1) and
is not included in the approximuate expression for
the temperature given in equation (H.12). For
k=0 or k—= the total velocity disturbance goes
to zero everywhere.

Since the velocity disturbance is small and goes
to zero at f—>o in the present problem, the
cumulative nonlinear effects will be negligible for
larger disturbances than they would be for the
impulsive-motion case. Also from a mathemati-
cal point of view, it is interesting to note that,
for the present impulsive wall-temperature prob-
lem, the linear approximation is uniformly wvalid
in the limit of a vanishingly small disturbance.
In this limit, no discontinuities of the shock-wave
type develop, although discontinunities in the
derivatives of the flow quantities do occur at
=0 and at r=¢.
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